mysql partition分区
(转)
自5.1开始对分区(Partition)有支持
= 水平分区(根据列属性按行分)=
举个简单例子:一个包含十年发票记录的表可以被分区为十个不同的分区,每个分区包含的是其中一年的记录。
=== 水平分区的几种模式:===
* Range(范围) – 这种模式允许DBA将数据划分不同范围。例如DBA可以将一个表通过年份划分成三个分区,80年代(1980's)的数据,90年代(1990's)的数据以及任何在2000年(包括2000年)后的数据。
* Hash(哈希) – 这中模式允许DBA通过对表的一个或多个列的Hash Key进行计算,最后通过这个Hash码不同数值对应的数据区域进行分区,。例如DBA可以建立一个对表主键进行分区的表。
* Key(键值) – 上面Hash模式的一种延伸,这里的Hash Key是MySQL系统产生的。
* List(预定义列表) – 这种模式允许系统通过DBA定义的列表的值所对应的行数据进行分割。例如:DBA建立了一个横跨三个分区的表,分别根据2004年2005年和2006年值所对应的数据。
* Composite(复合模式) - 很神秘吧,哈哈,其实是以上模式的组合使用而已,就不解释了。举例:在初始化已经进行了Range范围分区的表上,我们可以对其中一个分区再进行hash哈希分区。
= 垂直分区(按列分)=
举个简单例子:一个包含了大text和BLOB列的表,这些text和BLOB列又不经常被访问,这时候就要把这些不经常使用的text和BLOB了划分到另一个分区,在保证它们数据相关性的同时还能提高访问速度。
[分区表和未分区表试验过程]
*创建分区表,按日期的年份拆分
- mysql> CREATE TABLE part_tab ( c1 int default NULL, c2 varchar(30) default NULL, c3 date default NULL) engine=myisam
- PARTITION BY RANGE (year(c3)) (PARTITION p0 VALUES LESS THAN (1995),
- PARTITION p1 VALUES LESS THAN (1996) , PARTITION p2 VALUES LESS THAN (1997) ,
- PARTITION p3 VALUES LESS THAN (1998) , PARTITION p4 VALUES LESS THAN (1999) ,
- PARTITION p5 VALUES LESS THAN (2000) , PARTITION p6 VALUES LESS THAN (2001) ,
- PARTITION p7 VALUES LESS THAN (2002) , PARTITION p8 VALUES LESS THAN (2003) ,
- PARTITION p9 VALUES LESS THAN (2004) , PARTITION p10 VALUES LESS THAN (2010),
- PARTITION p11 VALUES LESS THAN MAXVALUE );
注意最后一行,考虑到可能的最大值
*创建未分区表
- mysql> create table no_part_tab (c1 int(11) default NULL,c2 varchar(30) default NULL,c3 date default NULL) engine=myisam;
*通过存储过程灌入800万条测试数据
mysql> set sql_mode=''; /* 如果创建存储过程失败,则先需设置此变量, bug? */
MySQL> delimiter // /* 设定语句终结符为 //,因存储过程语句用;结束 */
- mysql> CREATE PROCEDURE load_part_tab()
- begin
- declare v int default 0;
- while v < 8000000
- do
- insert into part_tab
- values (v,'testing partitions',adddate('1995-01-01',(rand(v)*36520) mod 3652));
- set v = v + 1;
- end while;
- end
- //
- mysql> delimiter ;
- mysql> call load_part_tab();
Query OK, 1 row affected (8 min 17.75 sec)
- mysql> insert into no_part_tab select * from part_tab;
Query OK, 8000000 rows affected (51.59 sec)
Records: 8000000 Duplicates: 0 Warnings: 0
* 测试SQL性能
- mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';
+----------+
| count(*) |
+----------+
| 795181 |
+----------+
1 row in set (0.55 sec)
- mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';
+----------+
| count(*) |
+----------+
| 795181 |
+----------+
1 row in set (4.69 sec)
结果表明分区表比未分区表的执行时间少90%。
* 通过explain语句来分析执行情况
- mysql > explain select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31'\G
/* 结尾的\G使得mysql的输出改为列模式 */
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: no_part_tab
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 8000000
Extra: Using where
1 row in set (0.00 sec)
- mysql> explain select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: part_tab
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 798458
Extra: Using where
1 row in set (0.00 sec)
explain语句显示了SQL查询要处理的记录数目
* 试验创建索引后情况
- mysql> create index idx_of_c3 on no_part_tab (c3);
Query OK, 8000000 rows affected (1 min 18.08 sec)
Records: 8000000 Duplicates: 0 Warnings: 0
- mysql> create index idx_of_c3 on part_tab (c3);
Query OK, 8000000 rows affected (1 min 19.19 sec)
Records: 8000000 Duplicates: 0 Warnings: 0
创建索引后的数据库文件大小列表:
2008-05-24 09:23 8,608 no_part_tab.frm
2008-05-24 09:24 255,999,996 no_part_tab.MYD
2008-05-24 09:24 81,611,776 no_part_tab.MYI
2008-05-24 09:25 0 part_tab#P#p0.MYD
2008-05-24 09:26 1,024 part_tab#P#p0.MYI
2008-05-24 09:26 25,550,656 part_tab#P#p1.MYD
2008-05-24 09:26 8,148,992 part_tab#P#p1.MYI
2008-05-24 09:26 25,620,192 part_tab#P#p10.MYD
2008-05-24 09:26 8,170,496 part_tab#P#p10.MYI
2008-05-24 09:25 0 part_tab#P#p11.MYD
2008-05-24 09:26 1,024 part_tab#P#p11.MYI
2008-05-24 09:26 25,656,512 part_tab#P#p2.MYD
2008-05-24 09:26 8,181,760 part_tab#P#p2.MYI
2008-05-24 09:26 25,586,880 part_tab#P#p3.MYD
2008-05-24 09:26 8,160,256 part_tab#P#p3.MYI
2008-05-24 09:26 25,585,696 part_tab#P#p4.MYD
2008-05-24 09:26 8,159,232 part_tab#P#p4.MYI
2008-05-24 09:26 25,585,216 part_tab#P#p5.MYD
2008-05-24 09:26 8,159,232 part_tab#P#p5.MYI
2008-05-24 09:26 25,655,740 part_tab#P#p6.MYD
2008-05-24 09:26 8,181,760 part_tab#P#p6.MYI
2008-05-24 09:26 25,586,528 part_tab#P#p7.MYD
2008-05-24 09:26 8,160,256 part_tab#P#p7.MYI
2008-05-24 09:26 25,586,752 part_tab#P#p8.MYD
2008-05-24 09:26 8,160,256 part_tab#P#p8.MYI
2008-05-24 09:26 25,585,824 part_tab#P#p9.MYD
2008-05-24 09:26 8,159,232 part_tab#P#p9.MYI
2008-05-24 09:25 8,608 part_tab.frm
2008-05-24 09:25 68 part_tab.par
* 再次测试SQL性能
- mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';
+----------+
| count(*) |
+----------+
| 795181 |
+----------+
1 row in set (2.42 sec) /* 为原来4.69 sec 的51%*/
重启mysql ( net stop mysql, net start mysql)后,查询时间降为0.89 sec,几乎与分区表相同。
- mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';
+----------+
| count(*) |
+----------+
| 795181 |
+----------+
1 row in set (0.86 sec)
* 更进一步的试验
** 增加日期范围
- mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1997-12-31';
+----------+
| count(*) |
+----------+
| 2396524 |
+----------+
1 row in set (5.42 sec)
- mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1997-12-31';
+----------+
| count(*) |
+----------+
| 2396524 |
+----------+
1 row in set (2.63 sec)
** 增加未索引字段查询
- mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date
- '1996-12-31' and c2='hello';
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.75 sec)
- mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1996-12-31' and c2='hello';
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (11.52 sec)
= 初步结论 =
* 分区和未分区占用文件空间大致相同 (数据和索引文件)
* 如果查询语句中有未建立索引字段,分区时间远远优于未分区时间
* 如果查询语句中字段建立了索引,分区和未分区的差别缩小,分区略优于未分区。
= 最终结论 =
* 对于大数据量,建议使用分区功能。
* 去除不必要的字段
* 根据手册, 增加myisam_max_sort_file_size 会增加分区性能
[分区命令详解]
= 分区例子 =
* RANGE 类型
- CREATE TABLE users (
- uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
- name VARCHAR(30) NOT NULL DEFAULT '',
- email VARCHAR(30) NOT NULL DEFAULT ''
- )
- PARTITION BY RANGE (uid) (
- PARTITION p0 VALUES LESS THAN (3000000)
- DATA DIRECTORY = '/data0/data'
- INDEX DIRECTORY = '/data1/idx',
- PARTITION p1 VALUES LESS THAN (6000000)
- DATA DIRECTORY = '/data2/data'
- INDEX DIRECTORY = '/data3/idx',
- PARTITION p2 VALUES LESS THAN (9000000)
- DATA DIRECTORY = '/data4/data'
- INDEX DIRECTORY = '/data5/idx',
- PARTITION p3 VALUES LESS THAN MAXVALUE DATA DIRECTORY = '/data6/data'
- INDEX DIRECTORY = '/data7/idx'
- );
在这里,将用户表分成4个分区,以每300万条记录为界限,每个分区都有自己独立的数据、索引文件的存放目录,与此同时,这些目录所在的物理磁盘分区可能也都是完全独立的,可以提高磁盘IO吞吐量。
* LIST 类型
- CREATE TABLE category (
- cid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
- name VARCHAR(30) NOT NULL DEFAULT ''
- )
- PARTITION BY LIST (cid) (
- PARTITION p0 VALUES IN (0,4,8,12)
- DATA DIRECTORY = '/data0/data'
- INDEX DIRECTORY = '/data1/idx',
- PARTITION p1 VALUES IN (1,5,9,13)
- DATA DIRECTORY = '/data2/data'
- INDEX DIRECTORY = '/data3/idx',
- PARTITION p2 VALUES IN (2,6,10,14)
- DATA DIRECTORY = '/data4/data'
- INDEX DIRECTORY = '/data5/idx',
- PARTITION p3 VALUES IN (3,7,11,15)
- DATA DIRECTORY = '/data6/data'
- INDEX DIRECTORY = '/data7/idx'
- );
分成4个区,数据文件和索引文件单独存放。
* HASH 类型
- CREATE TABLE users (
- uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
- name VARCHAR(30) NOT NULL DEFAULT '',
- email VARCHAR(30) NOT NULL DEFAULT ''
- )
- PARTITION BY HASH (uid) PARTITIONS 4 (
- PARTITION p0
- DATA DIRECTORY = '/data0/data'
- INDEX DIRECTORY = '/data1/idx',
- PARTITION p1
- DATA DIRECTORY = '/data2/data'
- INDEX DIRECTORY = '/data3/idx',
- PARTITION p2
- DATA DIRECTORY = '/data4/data'
- INDEX DIRECTORY = '/data5/idx',
- PARTITION p3
- DATA DIRECTORY = '/data6/data'
- INDEX DIRECTORY = '/data7/idx'
- );
分成4个区,数据文件和索引文件单独存放。
例子:
- CREATE TABLE ti2 (id INT, amount DECIMAL(7,2), tr_date DATE)
- ENGINE=myisam
- PARTITION BY HASH( MONTH(tr_date) )
- PARTITIONS 6;
- CREATE PROCEDURE load_ti2()
- begin
- declare v int default 0;
- while v < 80000
- do
- insert into ti2
- values (v,'3.14',adddate('1995-01-01',(rand(v)*3652) mod 365));
- set v = v + 1;
- end while;
- end
- //
* KEY 类型
- CREATE TABLE users (
- uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
- name VARCHAR(30) NOT NULL DEFAULT '',
- email VARCHAR(30) NOT NULL DEFAULT ''
- )
- PARTITION BY KEY (uid) PARTITIONS 4 (
- PARTITION p0
- DATA DIRECTORY = '/data0/data'
- INDEX DIRECTORY = '/data1/idx',
- PARTITION p1
- DATA DIRECTORY = '/data2/data'
- INDEX DIRECTORY = '/data3/idx',
- PARTITION p2
- DATA DIRECTORY = '/data4/data'
- INDEX DIRECTORY = '/data5/idx',
- PARTITION p3
- DATA DIRECTORY = '/data6/data'
- INDEX DIRECTORY = '/data7/idx'
- );
分成4个区,数据文件和索引文件单独存放。
* 子分区
子分区是针对 RANGE/LIST 类型的分区表中每个分区的再次分割。再次分割可以是 HASH/KEY 等类型。例如:
- CREATE TABLE users (
- uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
- name VARCHAR(30) NOT NULL DEFAULT '',
- email VARCHAR(30) NOT NULL DEFAULT ''
- )
- PARTITION BY RANGE (uid) SUBPARTITION BY HASH (uid % 4) SUBPARTITIONS 2(
- PARTITION p0 VALUES LESS THAN (3000000)
- DATA DIRECTORY = '/data0/data'
- INDEX DIRECTORY = '/data1/idx',
- PARTITION p1 VALUES LESS THAN (6000000)
- DATA DIRECTORY = '/data2/data'
- INDEX DIRECTORY = '/data3/idx'
- );
对 RANGE 分区再次进行子分区划分,子分区采用 HASH 类型。
或者
- CREATE TABLE users (
- uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
- name VARCHAR(30) NOT NULL DEFAULT '',
- email VARCHAR(30) NOT NULL DEFAULT ''
- )
- PARTITION BY RANGE (uid) SUBPARTITION BY KEY(uid) SUBPARTITIONS 2(
- PARTITION p0 VALUES LESS THAN (3000000)
- DATA DIRECTORY = '/data0/data'
- INDEX DIRECTORY = '/data1/idx',
- PARTITION p1 VALUES LESS THAN (6000000)
- DATA DIRECTORY = '/data2/data'
- INDEX DIRECTORY = '/data3/idx'
- );
对 RANGE 分区再次进行子分区划分,子分区采用 KEY 类型。
= 分区管理 =
* 删除分区
- ALERT TABLE users DROP PARTITION p0;
删除分区 p0。
* 重建分区
o RANGE 分区重建
- ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES LESS THAN (6000000));
将原来的 p0,p1 分区合并起来,放到新的 p0 分区中。
o LIST 分区重建
- ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES IN(0,1,4,5,8,9,12,13));
将原来的 p0,p1 分区合并起来,放到新的 p0 分区中。
o HASH/KEY 分区重建
- ALTER TABLE users REORGANIZE PARTITION COALESCE PARTITION 2;
用 REORGANIZE 方式重建分区的数量变成2,在这里数量只能减少不能增加。想要增加可以用 ADD PARTITION 方法。
* 新增分区
o 新增 RANGE 分区
- ALTER TABLE category ADD PARTITION (PARTITION p4 VALUES IN (16,17,18,19)
- DATA DIRECTORY = '/data8/data'
- INDEX DIRECTORY = '/data9/idx');
新增一个RANGE分区。
o 新增 HASH/KEY 分区
- ALTER TABLE users ADD PARTITION PARTITIONS 8;
将分区总数扩展到8个。
[ 给已有的表加上分区 ]
- alter table results partition by RANGE (month(ttime))
- (PARTITION p0 VALUES LESS THAN (1),
- PARTITION p1 VALUES LESS THAN (2) , PARTITION p2 VALUES LESS THAN (3) ,
- PARTITION p3 VALUES LESS THAN (4) , PARTITION p4 VALUES LESS THAN (5) ,
- PARTITION p5 VALUES LESS THAN (6) , PARTITION p6 VALUES LESS THAN (7) ,
- PARTITION p7 VALUES LESS THAN (8) , PARTITION p8 VALUES LESS THAN (9) ,
- PARTITION p9 VALUES LESS THAN (10) , PARTITION p10 VALUES LESS THAN (11),
- PARTITION p11 VALUES LESS THAN (12),
- PARTITION P12 VALUES LESS THAN (13) );
默认分区限制分区字段必须是主键(PRIMARY KEY)的一部分,为了去除此
限制:
[方法1] 使用ID
- mysql> ALTER TABLE np_pk
- -> PARTITION BY HASH( TO_DAYS(added) )
- -> PARTITIONS 4;
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function
However, this statement using the id column for the partitioning column is valid, as shown here:
- mysql> ALTER TABLE np_pk
- -> PARTITION BY HASH(id)
- -> PARTITIONS 4;
Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0
[方法2] 将原有PK去掉生成新PK
- mysql> alter table results drop PRIMARY KEY;
Query OK, 5374850 rows affected (7 min 4.05 sec)
Records: 5374850 Duplicates: 0 Warnings: 0
- mysql> alter table results add PRIMARY KEY(id, ttime);
Query OK, 5374850 rows affected (6 min 14.86 sec)
Records: 5374850 Duplicates: 0 Warnings: 0
mysql partition分区的更多相关文章
- mysql Partition(分区)初探
mysql Partition(分区)初探 表数据量大的时候一般都考虑水平拆分,即所谓的sharding.不过mysql本身具有分区功能,可以实现一定程度 的水平切分. mysql是具有MERG ...
- MySQL partition分区I
http://blog.csdn.net/binger819623/article/details/5280267 一. 分区的概念二. 为什么使用分区?(优点)三. ...
- MYSQL之水平分区----MySQL partition分区I(5.1)
一. 分区的概念 二. 为什么使用分区?(优点) 三. 分区类型 四. 子分区 五. 对分区进行修改(增加.删除.分解.合并) 六 ...
- MySQL PARTITION 分区
MySQL HASH分区 http://www.cnblogs.com/chenmh/p/5644496.html RANGE分区:http://www.cnblogs.com/chenmh/p/56 ...
- MySQL Partition分区扫盲
MySQL从5..3开始支持Partition,你可以使用如下命令来确认你的版本是否支持Partition: mysql> SHOW VARIABLES LIKE '%partition%'; ...
- mysql的partition分区
前言:当一个表里面存储的数据特别多的时候,比如单个.myd数据都已经达到10G了的话,必然导致读取的效率很低,这个时候我们可以采用把数据分到几张表里面来解决问题.方式一:通过业务逻辑根据数据的大小通过 ...
- mysql表分区 partition
表分区 partition 当一张表的数据非常多的时候,比如单个.myd文件都达到10G, 这时,必然读取起来效率降低. 可不可以把表的数据分开在几张表上? 1: 从业务角度可以解决.. (分表,水平 ...
- mysql的分区和分表
分区 分区就是把一个数据表的文件和索引分散存储在不同的物理文件中. mysql支持的分区类型包括Range.List.Hash.Key,其中Range比较常用: RANGE分区:基于属于一个给定连续区 ...
- MySQL表分区技术
MySQL表分区技术 MySQL有4种分区类型: 1.RANGE 分区 - 连续区间的分区 - 基于属于一个给定连续区间的列值,把多行分配给分区: 2.LIST 分区 - 离散区间的分区 - 类似于按 ...
随机推荐
- java.lang.OutOfMemoryError: unable to create new native thread问题排查以及当前系统最大进程数量
1. 问题描述 线上某应用出问题,查看日志 这一组服务器是2台,每台都有.配置为64G,使用7G,空余内存非常多 2. 问题排查 环境变化:程序迁移到新机器,新机器是CentOS 7,程序运行账号由原 ...
- 精读《React PowerPlug 源码》
1. 引言 React PowerPlug 是利用 render props 进行更好状态管理的工具库. React 项目中,一般一个文件就是一个类,状态最细粒度就是文件的粒度.然而文件粒度并非状态管 ...
- cache2go - cachetable源码分析
今天我们来看cachetable.go这个源码文件,除了前面介绍过的主要数据结构CacheTable外还有如下2个类型: 下面先看剩下2个类型是怎么定义的: CacheItemPair非常简单,注释一 ...
- LeetCode专题-Python实现之第26题:Remove Duplicates from Sorted Array
导航页-LeetCode专题-Python实现 相关代码已经上传到github:https://github.com/exploitht/leetcode-python 文中代码为了不动官网提供的初始 ...
- Linux基础知识第一讲,基本目录结构与基本命令
目录 一丶Window 与 Linux的目录结构 1.Windows 与 Linux目录简介 2.Linux目录主要作用 3.任务栏与菜单栏,与关闭按钮 二丶Linux终端与常见命令学习 1.终端中的 ...
- Apache coredump 问题发现与解决记录
目录 Apache coredump 问题发现与解决记录 背景 发现问题 解决问题 方法 1 方法 2 总结 Linux 程序编译链接动态库版本问题 ldd 命令 动态库的编译和 soname 线上 ...
- Spring Cloud Alibaba基础教程:Nacos配置的加载规则详解
前情回顾: <Spring Cloud Alibaba基础教程:使用Nacos实现服务注册与发现> <Spring Cloud Alibaba基础教程:支持的几种服务消费方式(Res ...
- webpack4.0各个击破(5)—— Module篇
webpack4.0各个击破(5)-- Module篇 webpack作为前端最火的构建工具,是前端自动化工具链最重要的部分,使用门槛较高.本系列是笔者自己的学习记录,比较基础,希望通过问题 + 解决 ...
- aps.net core mvc中使用session
原因>>用session是想验证 前端输入的验证码和后端存入seesion的是否一致,也可以使用的是TempData[]. 铺垫>> 前端用GetValidateCode()方 ...
- Android项目刮刮奖详解(四)
Android项目刮刮奖详解(三) 前言 上一期我们已经是完成了刮刮卡的基本功能,本期就是给我们的项目增加个功能以及美化一番 目标 增加功能 用户刮卡刮到一定程度的时候,清除遮盖层 在遮盖层放张图片, ...