一. Hbase的region

我们先简单介绍下Hbase的架构和Hbase的region:

从物理集群的角度看,Hbase集群中,由一个Hmaster管理多个HRegionServer,其中每个HRegionServer都对应一台物理机器,一台HRegionServer服务器上又可以有多个Hregion(以下简称region)。要读取一个数据的时候,首先要先找到存放这个数据的region。而Spark在读取Hbase的时候,读取的Rdd会根据Hbase的region数量划分stage。所以当region存储设置得比较大导致region比较少,而spark的cpu core又比较多的时候,就会出现无法充分利用spark集群所有cpu core的情况。

我们再从逻辑表结构的角度看看Hbase表和region的关系。

  • Hbase是通过把数据分配到一定数量的region来达到负载均衡的。一个table会被分配到一个或多个region中,这些region会被分配到一个或者多个regionServer中。在自动split策略中,当一个region达到一定的大小就会自动split成两个region。
  • Region由一个或者多个Store组成,每个store保存一个columns family,每个Strore又由一个memStore和0至多个StoreFile组成。memStore存储在内存中,StoreFile存储在HDFS上
  • region是HBase中分布式存储和负载均衡的最小单元。不同Region分布到不同RegionServer上,但并不是存储的最小单元。

二. Spark读取Hbase优化及region手动拆分

在用spark的时候,spark正是根据hbase有多少个region来划分stage。也就是说region划分得太少会导致spark读取时的并发度太低,浪费性能。但如果region数目太多就会造成读写性能下降,也会增加ZooKeeper的负担。所以设置每个region的大小就很关键了。

自0.94.0版本以来,split还有三种策略可以选择,不过一般使用默认的分区策略就可以满足需求,我们要修改的是会触发region分区的存储容量大小。

而在0.94.0版本中,默认的region大小为10G,就是说当存储的数据达到10G的时候,就会触发region分区操作。有时候这个值可能太大,这时候就需要修改配置了。我们可以在HBASE_HOME/conf/hbase-site.xml文件中,增加如下配置:

<property>
<name>hbase.hregion.max.filesize</name>
<value>536870912</value>
</property>

其中的value值就是你要修改的触发region分区的大小,要注意这个值是以bit为单位的,这里是将region文件的大小改为512m。

修改之后我们就可以手动split region了,手动分区会自动根据这个新的配置值大小,将region已经存储起来的数据进行再次进行拆分。

我们可以在hbase shell中使用split来进行操作,有以下几种方式可以进行手动拆分。

split ‘tableName’
split ‘namespace:tableName’
split ‘regionName’ # format: ‘tableName,startKey,id’
split ‘tableName’, ‘splitKey’
split ‘regionName’, ‘splitKey’

这里使用的是split‘namespace:tableName’这种方式。其中tableName自不必多说,就是要拆分的表名,namespace可以在hbase的web界面中查看,一般会是default。

使用命令之后稍等一会,hbase会根据新的region文件大小去split,最终结果可以在web-ui的"table Details"一栏,点击具体table查看。

以上~


推荐阅读:

Spark DataFrame 的 groupBy vs groupByKey

spark RDD,reduceByKey vs groupByKey

Spark读Hbase优化 --手动划分region提高并行数的更多相关文章

  1. Spark读HBase写MySQL

    1 Spark读HBase Spark读HBase黑名单数据,过滤出当日新增userid,并与mysql黑名单表内userid去重后,写入mysql. def main(args: Array[Str ...

  2. HBase Shell手动移动Region

    在生产环境中很有可能有那么几个Region比较大,但是都运行在同一个Regionserver中. 这个时候就需要手动将region移动到负载低的Regionserver中. 步骤: 1.找到要移动的r ...

  3. IDEA中Spark读Hbase中的数据

    import org.apache.hadoop.hbase.HBaseConfiguration import org.apache.hadoop.hbase.io.ImmutableBytesWr ...

  4. IDEA中 Spark 读Hbase 报错处理:

    SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] // :: ERROR RecoverableZooKeepe ...

  5. Spark 读 Hbase

    package com.grady import org.apache.hadoop.hbase.HBaseConfiguration import org.apache.hadoop.hbase.c ...

  6. HBase最佳实践-读性能优化策略

    任何系统都会有各种各样的问题,有些是系统本身设计问题,有些却是使用姿势问题.HBase也一样,在真实生产线上大家或多或少都会遇到很多问题,有些是HBase还需要完善的,有些是我们确实对它了解太少.总结 ...

  7. spark sql读hbase

    项目背景 spark sql读hbase据说官网如今在写,但还没稳定,所以我基于hbase-rdd这个项目进行了一个封装,当中会区分是否为2进制,假设是就在配置文件里指定为#b,如long#b,还实用 ...

  8. hbase优化之region合并和压缩

    HBASE操作:(一般先合并region然后再压缩) 一 .Region合并: merge_region   'regionname1','regionname2' ,'true'  --true代表 ...

  9. spark读HFile对hbase表数据进行分析

    要求:计算hasgj表,计算每天新增mac数量. 因为spark直接扫描hbase表,对hbase集群访问量太大,给集群造成压力,这里考虑用spark读取HFile进行数据分析. 1.建立hasgj表 ...

随机推荐

  1. [Java]LeetCode297. 二叉树的序列化与反序列化 | Serialize and Deserialize Binary Tree

    Serialization is the process of converting a data structure or object into a sequence of bits so tha ...

  2. linux下crontab的使用

    在LINUX中,周期执行的任务一般由cron这个守护进程来处理[ps -ef|grep cron].cron读取一个或多个配置文件,这些配置文件中包含了命令行及其调用时间.cron的配置文件称为“cr ...

  3. Python档案袋(函数与函数装饰器 )

    特点:代码复用.可扩展.保持一致性 函数简单的实现,返回值的不同: #定义方法 def funx1(): pass def funx2(): return 0 def funx3(): return ...

  4. Python爬虫入门教程 29-100 手机APP数据抓取 pyspider

    1. 手机APP数据----写在前面 继续练习pyspider的使用,最近搜索了一些这个框架的一些使用技巧,发现文档竟然挺难理解的,不过使用起来暂时没有障碍,估摸着,要在写个5篇左右关于这个框架的教程 ...

  5. Leetcode 137. 只出现一次的数字 II - 题解

    Leetcode 137. 只出现一次的数字 II - 题解 137. Single Number II 在线提交: https://leetcode.com/problems/single-numb ...

  6. SpringBoot入门教程(二)CentOS部署SpringBoot项目从0到1

    在之前的博文<详解intellij idea搭建SpringBoot>介绍了idea搭建SpringBoot的详细过程, 并在<CentOS安装Tomcat>中介绍了Tomca ...

  7. 《深入java虚拟机》读书笔记之垃圾收集器与内存分配策略

    前言 该读书笔记用于记录在学习<深入理解Java虚拟机--JVM高级特性与最佳实践>一书中的一些重要知识点,对其中的部分内容进行归纳,或者是对其中不明白的地方做一些注释.主要是方便之后进行 ...

  8. SpringBoot读取yml中的配置,并分离配置文件

    前言 在项目中经常遇到需要读取配置文件中的配置信息,这些配置信息之所以不写在代码中是因为实际项目发布或者部署之后会进行更改,而如果写在代码中编译之后没有办法进行修改. 之前使用的是properties ...

  9. spring boot 统一异常处理

    需求源自于任何一个业务的编写总会有各种各样的条件判断,需要时时手动抛出异常,又希望让接口返回友好的错误信息. spring boot提供的帮助是自动将异常重定向到路由为/error的控制器 但是我们又 ...

  10. MariaDB Galera Cluster 部署 + keepalived实现高可用

    MariaDB Galera Cluster 部署 MariaDB作为Mysql的一个分支,在开源项目中已经广泛使用,例如大热的openstack,所以,为了保证服务的高可用性,同时提高系统的负载能力 ...