思路

  • 汉诺塔是递归思想最经典的例子,通过递归不断缩小问题,将n个盘子的问题简化n-1个,直至1个。

  • 三个盘子,分别为A:from,B:to,C:by(A为起点盘,B为目标盘,C为中转盘)

  • 过程

    1. 将1~n-1号盘子从A移动到C,借助B,递归进行
    2. 将第n号盘子从A移动到B
    3. 将1~n-1号盘子从C移动到B,借助A,递归进行
    • 当n==1时,直接将其从A移动到B

例程

#include <iostream>
using namespace std;
//A:from B:to C:by
void hanoi(int n, char A, char B, char C){
//只有1个的话,从from移动到to
if(n==1){
printf("%c->%d->%c\n", A, n, B);
return;
}
//将前n-1个从from借助to移动到by
hanoi(n-1, A, C, B);
//将第n个从from移动到to
printf("%c->%d->%c\n", A, n, B);
//将前n-1个从by借助from移动到to
hanoi(n-1, C, B, A);
return;
}
int main(){
int n;
char from, to, by;
scanf("%d %c %c %c", &n, &from, &to, &by);
hanoi(n, from, to, by);
return 0;
}

NOI-OJ 2.2 ID:6261 汉诺塔的更多相关文章

  1. BZOJ_1019_[SHOI2008]_汉诺塔_(DP)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1019 汉诺塔游戏,但是有移动优先级,在不违反原有规则的情况下,给定优先移动目标.求完成游戏所需 ...

  2. 递归--练习2--noi6261汉诺塔

    递归--练习2--noi6261汉诺塔 一.心得 先把递推公式写出来,会很简单的 二.题目 6261:汉诺塔问题 总时间限制:  1000ms 内存限制:  65536kB 描述 约19世纪末,在欧州 ...

  3. 九度oj 题目1458:汉诺塔III

    题目描述: 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘全部移到右边的杆上,条件是一次只能移动 ...

  4. "递归"实现"约瑟夫环","汉诺塔"

    一:约瑟夫环问题是由古罗马的史学家约瑟夫提出的,问题描述为:编号为1,2,-.n的n个人按顺时针方向围坐在一张圆桌周围,每个人持有一个密码(正整数),一开始任选一个正整数作为报数上限值m,从第一个人开 ...

  5. javascript实现汉诺塔动画效果

    javascript实现汉诺塔动画效果 当初以为不用html5也很简单,踩了javascript单线程的大坑后终于做出来了,没事可以研究下,对理解javascript的执行过程还是很有帮助的,代码很烂 ...

  6. 【BZOJ】1019: [SHOI2008]汉诺塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题意:汉诺塔规则,只不过盘子n<=30,终点在B柱或C柱,每一次移动要遵守规则:1.小的 ...

  7. 【bzoj1019】汉诺塔

    [bzoj1019]汉诺塔 题意 传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1019 分析 思路1:待定系数+解方程 设\(f[n]\)为 ...

  8. bzoj千题计划109:bzoj1019: [SHOI2008]汉诺塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题目中问步骤数,没说最少 可以大胆猜测移动方案唯一 (真的是唯一但不会证) 设f[i][j] ...

  9. 【Python学习之七】递归——汉诺塔问题的算法理解

    汉诺塔问题 汉诺塔的移动可以用递归函数非常简单地实现.请编写move(n, a, b, c)函数,它接收参数n,表示3个柱子A.B.C中第1个柱子A的盘子数量,然后打印出把所有盘子从A借助B移动到C的 ...

随机推荐

  1. RHEL6 删除软RAID

    停止使用RAID: 1.umount raid组上的硬盘的所用的分区 若使用raid组创建vg,需要删除或去激活VG 2.停止raid服务 mdadm -S /dev/md0 3.清除MBR # md ...

  2. LeetCode算法题-Perfect Number(Java实现)

    这是悦乐书的第249次更新,第262篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第116题(顺位题号是507).我们定义Perfect Number是一个正整数,它等于 ...

  3. Django的认证系统

    Django自带的用户认证 我们在开发一个网站的时候,无可避免的需要设计实现网站的用户系统.此时我们需要实现包括用户注册.用户登录.用户认证.注销.修改密码等功能,这还真是个麻烦的事情呢. Djang ...

  4. MongoDB的搭建并配置主从以及读写分离

    1.环境准备  1.Centos7 2.mongodb3.4.93.三台机器IP分别是:10.170.1.16.10.170.1.18.10.170.1.33 2.mongdb数据库的安装 如下操作是 ...

  5. Redis其他常用操作

    详细Redis操作手册: http://doc.redisfans.com/ ============================================================= ...

  6. Extending the Yahoo! Streaming Benchmark

    could accomplish with Flink back at Twitter. I had an application in mind that I knew I could make m ...

  7. org.springframework.web.context.support.XmlWebApplicationContext.refresh Exception encountered during context initialization - cancelling refresh attempt: org.springframework.beans.factory.BeanCreatio

    错误异常: 11-Apr-2019 18:07:14.006 警告 [RMI TCP Connection(5)-127.0.0.1] org.springframework.web.context. ...

  8. Java 8 新特性:6-Optional类

    (原) 先看看上面的说明: /** * A container object which may or may not contain a non-null value. * If a value i ...

  9. 正则表达式regex(golang版)

    代码: //File: main.go package main import ( "fmt" "regexp" ) func main() { r := re ...

  10. DEV SIT UAT PET SIM PRD PROD常见环境英文缩写含义

    英文缩写 英文 中文 DEV development 开发 SIT System Integrate Test 系统整合测试(内测) UAT User Acceptance Test 用户验收测试 P ...