NOI-OJ 2.2 ID:6261 汉诺塔
思路
汉诺塔是递归思想最经典的例子,通过递归不断缩小问题,将n个盘子的问题简化n-1个,直至1个。
三个盘子,分别为A:from,B:to,C:by(A为起点盘,B为目标盘,C为中转盘)
过程
- 将1~n-1号盘子从A移动到C,借助B,递归进行
- 将第n号盘子从A移动到B
- 将1~n-1号盘子从C移动到B,借助A,递归进行
- 当n==1时,直接将其从A移动到B
例程
#include <iostream>
using namespace std;
//A:from B:to C:by
void hanoi(int n, char A, char B, char C){
//只有1个的话,从from移动到to
if(n==1){
printf("%c->%d->%c\n", A, n, B);
return;
}
//将前n-1个从from借助to移动到by
hanoi(n-1, A, C, B);
//将第n个从from移动到to
printf("%c->%d->%c\n", A, n, B);
//将前n-1个从by借助from移动到to
hanoi(n-1, C, B, A);
return;
}
int main(){
int n;
char from, to, by;
scanf("%d %c %c %c", &n, &from, &to, &by);
hanoi(n, from, to, by);
return 0;
}
NOI-OJ 2.2 ID:6261 汉诺塔的更多相关文章
- BZOJ_1019_[SHOI2008]_汉诺塔_(DP)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1019 汉诺塔游戏,但是有移动优先级,在不违反原有规则的情况下,给定优先移动目标.求完成游戏所需 ...
- 递归--练习2--noi6261汉诺塔
递归--练习2--noi6261汉诺塔 一.心得 先把递推公式写出来,会很简单的 二.题目 6261:汉诺塔问题 总时间限制: 1000ms 内存限制: 65536kB 描述 约19世纪末,在欧州 ...
- 九度oj 题目1458:汉诺塔III
题目描述: 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘全部移到右边的杆上,条件是一次只能移动 ...
- "递归"实现"约瑟夫环","汉诺塔"
一:约瑟夫环问题是由古罗马的史学家约瑟夫提出的,问题描述为:编号为1,2,-.n的n个人按顺时针方向围坐在一张圆桌周围,每个人持有一个密码(正整数),一开始任选一个正整数作为报数上限值m,从第一个人开 ...
- javascript实现汉诺塔动画效果
javascript实现汉诺塔动画效果 当初以为不用html5也很简单,踩了javascript单线程的大坑后终于做出来了,没事可以研究下,对理解javascript的执行过程还是很有帮助的,代码很烂 ...
- 【BZOJ】1019: [SHOI2008]汉诺塔
http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题意:汉诺塔规则,只不过盘子n<=30,终点在B柱或C柱,每一次移动要遵守规则:1.小的 ...
- 【bzoj1019】汉诺塔
[bzoj1019]汉诺塔 题意 传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1019 分析 思路1:待定系数+解方程 设\(f[n]\)为 ...
- bzoj千题计划109:bzoj1019: [SHOI2008]汉诺塔
http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题目中问步骤数,没说最少 可以大胆猜测移动方案唯一 (真的是唯一但不会证) 设f[i][j] ...
- 【Python学习之七】递归——汉诺塔问题的算法理解
汉诺塔问题 汉诺塔的移动可以用递归函数非常简单地实现.请编写move(n, a, b, c)函数,它接收参数n,表示3个柱子A.B.C中第1个柱子A的盘子数量,然后打印出把所有盘子从A借助B移动到C的 ...
随机推荐
- MongoDB的导入与导出
一.导入与导出可以操作本地的mongodb也可以是远程的mongodb,通用选项: -h host 主机 --port port 端口 -u username 用户名 -p password 密码 如 ...
- 基于udp简单聊天的系统
老师博客:http://www.cnblogs.com/Eva-J/articles/8244551.html#_label4 基于udp的简单的聊天代码 说明:这段代码,显示有client向serv ...
- 【Python 05】Python开发环境搭建
Python3安装和使用 1.安装 Python管方下载地址 选择Customize installation安装,并且勾选Add Python 3.X to PATH. 勾选Documentatio ...
- Python开发【字符串格式化篇】
1.百分号 __author__ = "Tang" # + 号 拼接 msg = "i am " + " tang" print(msg) ...
- D. Concatenated Multiples(离线处理)
思路:直接离线处理出每个ai 的10倍, 100倍, 1000倍的mod k 后的数值的个数,使用map<int,int >ss[12]存储, ss[x][y]表示 (ai*10x)%k= ...
- 013_实践HTTP206状态:部分内容和范围请求
HTTP 2xx范围内的状态码表明了:"客户端发送的请求已经被服务器接受并且被成功处理了".HTTP/1.1 200 OK是HTTP请求成功后的标准响应,当你在浏览器中打开www. ...
- 错误:set Assigning an instance of 'esri.***' which is not a subclass of 'esri.***‘
1. 出现 set Assigning an instance of 'esri.***' which is not a subclass of 'esri.***‘的错误原因 是 因为没有找见 ...
- 在Bootstrap开发框架中使用dataTable直接录入表格行数据(2)--- 控件数据源绑定
在前面随笔<在Bootstrap开发框架中使用dataTable直接录入表格行数据>中介绍了在Web页面中使用Jquery DataTable插件进行对数据直接录入操作,这种处理能够给用户 ...
- SpringCloud(8)微服务监控Spring Boot Admin
1.简介 Spring Boot Admin 是一个管理和监控Spring Boot 应用程序的开源软件.Spring Boot Admin 分为 Server 端和 Client 端,Spring ...
- 基于微服务的DevOps落地指南 交付效率提升40%
基于微服务的DevOps落地指南 交付效率提升40% 2015-2016年,珍爱线下门店已新增覆盖城市9个,与此同时,CRM系统大小故障却发生了数十起... ... 珍爱网是以“网络征选+人工红娘”模 ...