python进程池multiprocessing.Pool和线程池multiprocessing.dummy.Pool实例
进程池:
# -*- coding: utf-8 -*- import multiprocessing
import time def func(msg):
print('msg: ', msg)
time.sleep(1)
print('********')
return 'func_return: %s' % msg if __name__ == '__main__':
# apply_async
print('\n--------apply_async------------')
pool = multiprocessing.Pool(processes=4)
results = []
for i in range(10):
msg = 'hello world %d' % i
result = pool.apply_async(func, (msg, ))
results.append(result)
print('apply_async: 不堵塞') for i in results:
i.wait() # 等待进程函数执行完毕 for i in results:
if i.ready(): # 进程函数是否已经启动了
if i.successful(): # 进程函数是否执行成功
print(i.get()) # 进程函数返回值 # apply
print('\n--------apply------------')
pool = multiprocessing.Pool(processes=4)
results = []
for i in range(10):
msg = 'hello world %d' % i
result = pool.apply(func, (msg,))
results.append(result)
print('apply: 堵塞') # 执行完func才执行该句
pool.close()
pool.join() # join语句要放在close之后
print(results) # map
print('\n--------map------------')
args = [1, 2, 4, 5, 7, 8]
pool = multiprocessing.Pool(processes=5)
return_data = pool.map(func, args)
print('堵塞') # 执行完func才执行该句
pool.close()
pool.join() # join语句要放在close之后
print(return_data) # map_async
print('\n--------map_async------------')
pool = multiprocessing.Pool(processes=5)
result = pool.map_async(func, args)
print('ready: ', result.ready())
print('不堵塞')
result.wait() # 等待所有进程函数执行完毕 if result.ready(): # 进程函数是否已经启动了
if result.successful(): # 进程函数是否执行成功
print(result.get()) # 进程函数返回值
线程池:
# -*- coding: utf-8 -*- from multiprocessing.dummy import Pool as ThreadPool
import time def fun(msg):
print('msg: ', msg)
time.sleep(1)
print('********')
return 'fun_return %s' % msg # map_async
print('\n------map_async-------')
arg = [1, 2, 10, 11, 18]
async_pool = ThreadPool(processes=4)
result = async_pool.map_async(fun, arg)
print(result.ready()) # 线程函数是否已经启动了
print('map_async: 不堵塞')
result.wait() # 等待所有线程函数执行完毕
print('after wait')
if result.ready(): # 线程函数是否已经启动了
if result.successful(): # 线程函数是否执行成功
print(result.get()) # 线程函数返回值 # map
print('\n------map-------')
arg = [3, 5, 11, 19, 12]
pool = ThreadPool(processes=3)
return_list = pool.map(fun, arg)
print('map: 堵塞')
pool.close()
pool.join()
print(return_list) # apply_async
print('\n------apply_async-------')
async_pool = ThreadPool(processes=4)
results =[]
for i in range(5):
msg = 'msg: %d' % i
result = async_pool.apply_async(fun, (msg, ))
results.append(result) print('apply_async: 不堵塞')
# async_pool.close()
# async_pool.join()
for i in results:
i.wait() # 等待线程函数执行完毕 for i in results:
if i.ready(): # 线程函数是否已经启动了
if i.successful(): # 线程函数是否执行成功
print(i.get()) # 线程函数返回值 # apply
print('\n------apply-------')
pool = ThreadPool(processes=4)
results =[]
for i in range(5):
msg = 'msg: %d' % i
result = pool.apply(fun, (msg, ))
results.append(result) print('apply: 堵塞')
print(results)
计算多的用多进程
io多的用多线程
python进程池multiprocessing.Pool和线程池multiprocessing.dummy.Pool实例的更多相关文章
- python第十一天-----补:线程池
低版本: #!/usr/bin/env python import threading import time import queue class TreadPool: ""&q ...
- python(13)多线程:线程池,threading
python 多进程:多进程 先上代码: pool = threadpool.ThreadPool(10) #建立线程池,控制线程数量为10 reqs = threadpool.makeRequest ...
- java多线程系类:JUC线程池:03之线程池原理(二)(转)
概要 在前面一章"Java多线程系列--"JUC线程池"02之 线程池原理(一)"中介绍了线程池的数据结构,本章会通过分析线程池的源码,对线程池进行说明.内容包 ...
- java多线程系类:JUC线程池:01之线程池架构
概要 前面分别介绍了"Java多线程基础"."JUC原子类"和"JUC锁".本章介绍JUC的最后一部分的内容--线程池.内容包括:线程池架构 ...
- (转)WebSphere 中池资源调优 - 线程池、连接池和 ORB
WebSphere 中池资源调优 - 线程池.连接池和 ORB 来自:https://www.ibm.com/developerworks/cn/websphere/library/techartic ...
- 线程池;java的线程池的实现原理;适用于频繁互动(如电商网站)
线程池是一种多线程处理形式,处理过程中将任务加入到队列,然后在创建线程后自己主动启动这些任务.线程池线程都是后台线程.每一个线程都使用默认的堆栈大小,以默认的优先级执行.并处于多线程单元中. 假设某个 ...
- java多线程系类:JUC线程池:02之线程池原理(一)
在上一章"Java多线程系列--"JUC线程池"01之 线程池架构"中,我们了解了线程池的架构.线程池的实现类是ThreadPoolExecutor类.本章,我 ...
- java多线程、线程池及Spring配置线程池详解
1.java中为什么要使用多线程使用多线程,可以把一些大任务分解成多个小任务来执行,多个小任务之间互不影像,同时进行,这样,充分利用了cpu资源.2.java中简单的实现多线程的方式 继承Thread ...
- juc线程池原理(四): 线程池状态介绍
<Thread之一:线程生命周期及五种状态> <juc线程池原理(四): 线程池状态介绍> 线程有5种状态:新建状态,就绪状态,运行状态,阻塞状态,死亡状态.线程池也有5种状态 ...
- 你创建线程池最好分为两种线程池,io密集型线程池,或者cpu密集型线程池
你创建线程池最好分为两种线程池,io密集型线程池,或者cpu密集型线程池. 否则,如果只用一个线程池的话,不管是iO密集的线程,或者cpu消耗大的都放在同一个线程池的话,会发生线程池被撑满的情况
随机推荐
- NLP入门(六)pyltp的介绍与使用
pyltp的简介 语言技术平台(LTP)经过哈工大社会计算与信息检索研究中心 11 年的持续研发和推广, 是国内外最具影响力的中文处理基础平台.它提供的功能包括中文分词.词性标注.命名实体识别.依 ...
- 第14章 添加JavaScript客户端 - Identity Server 4 中文文档(v1.0.0)
本快速入门将展示如何构建基于浏览器的JavaScript客户端应用程序(有时称为" SPA "). 用户将登录IdentityServer,使用IdentityServer发出的访 ...
- DSAPI之摄像头追踪指定颜色物体
Private CAM As New DSAPI.摄像头_avicap32 Private Clr As Color = Color.FromArgb(230, 50, 50) Private _Lo ...
- C#把动态创建的多个控件中指定控件显示在最上层
在创建多个控件后,有些控件会发生重叠,那么就需要在鼠标按下它时能显示在最上层,下面通过先将按下操作的控件删除然后再重建,就达到让它显示在最上层了 //控件按下 private void picture ...
- C# 操作Word 中的OLE——插入、编辑、读取 OLE
概述 OLE,Object Linking and Embedding,即对象连接与嵌入.我们在设计程序时,OLE可以用来创建复合文档,把文字.声音.图像.表格.应用程序等类型的信息组合在一起,在Wo ...
- Java开发笔记(二十三)数组工具Arrays
数组作为一种组合形式的数据类型,必然要求提供一些处理数组的简便办法,包括数组比较.数组复制.数组排序等等.为此Java专门设计了Arrays工具,该工具包含了几个常用方法,方便程序员对数组进行加工操作 ...
- Elasticsearch单机双节点集群部署实战
一.安装第一个ElasticSearch(主节点) 1.创建es用户,启动es不能使用root用户 useradd es passwd es12 root用户进入/home/es目录下 2.获取Ela ...
- Pythoy 数据类型序列化——json&pickle 模块
Pythoy 数据类型序列化--json&pickle 模块 TOC 什么是序列化/反序列化 pickle 模块 json 模块 对比json和pickle json.tool 命令行接口 什 ...
- 2019-02-10 扩展Python控制台实现中文反馈信息
"中文编程"知乎专栏原文地址 参考了周蟒的实现, 运行效果如下: $ python3 解释器.py Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 ...
- android.database.sqlite.SQLiteException: no such column: aaa (code 1): , while compiling: DELETE FROM users WHERE user_name=aaa解决办法
在写安卓登录注册时注销按钮闪退发现: 这是因为此处错误: 因为用户名为字符串,不是整型,数据库查询要引号,少了引号查询不了,导致闪退 解决后成功运行 正确用法: 下次谨记,细节决定成败呀!