[ Codeforces Round #554 (Div. 2) C]
1 second
256 megabytes
standard input
standard output
Neko loves divisors. During the latest number theory lesson, he got an interesting exercise from his math teacher.
Neko has two integers aa and bb. His goal is to find a non-negative integer kk such that the least common multiple of a+ka+k and b+kb+k is the smallest possible. If there are multiple optimal integers kk, he needs to choose the smallest one.
Given his mathematical talent, Neko had no trouble getting Wrong Answer on this problem. Can you help him solve it?
The only line contains two integers aa and bb (1≤a,b≤1091≤a,b≤109).
Print the smallest non-negative integer kk (k≥0k≥0) such that the lowest common multiple of a+ka+k and b+kb+k is the smallest possible.
If there are many possible integers kk giving the same value of the least common multiple, print the smallest one.
6 10
2
21 31
9
5 10
0
In the first test, one should choose k=2k=2, as the least common multiple of 6+26+2 and 10+210+2 is 2424, which is the smallest least common multiple possible.
题意:给出两个整数a,b,求出使(a+k)*(b+k)/gcd(a+k,b+k)的值最小的k,如果有多组答案求出最小的k
题解:gcd(a+k,b+k)=gcd(a-b,b+k),所以gcd(a+k,b+k)一定是(a-b)的一个因子,也就是说a+k一定是(a-b)的因子的倍数,即a+k=q*t,所以直接枚举(a-b)的因子q,求出相应的q*t,然后就可以根据k=q*t-a求出k,然后就可以求出最小的(a+k)*(b+k)/gcd(a+k,b+k)了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<vector>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
#define debug(x) cout<< #x <<" is "<<x<<endl;
int gcd(ll x,ll y){
if(y==)return x;
return gcd(y,x%y);
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
if(n<m)swap(n,m);
ll xx=n-m;
ll ans=-;
ll ans0=;
for(ll i=;i*i<=xx;i++){
if(xx%i==){
ll y1=n/i;
if(n%i)y1++;
y1*=i;
y1-=n;
if((y1+n)*(y1+m)/gcd(y1+n,y1+m)<ans||ans==-){
ans=(y1+n)*(y1+m)/gcd(y1+n,y1+m);
ans0=y1;
}
else if((y1+n)*(y1+m)/gcd(y1+n,y1+m)==ans&&y1<ans0){
ans0=y1;
}
ll y2=n/(xx/i);
if(n%(xx/i))y2++;
y2*=(xx/i);
y2-=n;
if((y2+n)*(y2+m)/gcd(y2+n,y2+m)<ans||ans==-){
ans=(y2+n)*(y2+m)/gcd(y2+n,y2+m);
ans0=y2;
}
else if((y2+n)*(y2+m)/gcd(y2+n,y2+m)==ans&&y2<ans0){
ans0=y2;
}
}
}
printf("%lld\n",ans0);
return ;
}
[ Codeforces Round #554 (Div. 2) C]的更多相关文章
- Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)
题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k 算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...
- Codeforces Round #554 (Div. 2) 1152B. Neko Performs Cat Furrier Transform
学了这么久,来打一次CF看看自己学的怎么样吧 too young too simple 1152B. Neko Performs Cat Furrier Transform 题目链接:"ht ...
- Codeforces Round #554 (Div. 2) 1152A - Neko Finds Grapes
学了这么久,来打一次CF看看自己学的怎么样吧 too young too simple 1152A - Neko Finds Grapes 题目链接:"https://codeforces. ...
- Codeforces Round #554 (Div. 2)-C(gcd应用)
题目链接:https://codeforces.com/contest/1152/problem/C 题意:给定a,b(<1e9).求使得lcm(a+k,b+k)最小的k,若有多个k,求最小的k ...
- Codeforces Round #554 (Div. 2) D 贪心 + 记忆化搜索
https://codeforces.com/contest/1152/problem/D 题意 给你一个n代表合法括号序列的长度一半,一颗有所有合法括号序列构成的字典树上,选择最大的边集,边集的边没 ...
- Codeforces Round #554 (Div. 2) C 数论
https://codeforces.com/contest/1152/problem/C 题意 a和b,找到k,使得lcm(a+k,b+k)最小(a,b:1e9) 题解 设gcd=gcd(a+k,b ...
- Codeforces Round #554 (Div. 2) C.Neko does Maths (gcd的运用)
题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给定两个正整数a,b,其中(1<=a,b<=1e9),求一个正整数k(0&l ...
- CodeForces Round #554 Div.2
A. Neko Finds Grapes 代码: #include <bits/stdc++.h> using namespace std; ; int N, M; int a[maxn] ...
- Codeforces Round #554 (Div. 2)自闭记
A 签到 #include<bits/stdc++.h> using namespace std; ],t[],ans; int main() { scanf("%d%d&quo ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)
传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...
随机推荐
- 多线程之 Runnable接口
一.多线程实现的第二种方式 1.定义类,实现Runnable接口 2.重写接口中的run方法,要在run方法中定义线程要执行的任务 public class MyRunnableImpl implem ...
- python学习笔记第一节
一.HelloWorld #!/usr/bin/env python #-*- coding:utf-8 -*- print("HelloWorld!") 二.用户交互 #!/us ...
- Python之OS内置模块
os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径 os.chdir("dirname") 改变当前脚本工作目录:相当于shell下cd os.curd ...
- spring-boot整合mybatis(web mysql logback配置)
pom.xml相关的配置说明. 配置文件看着比价多,在创建spring-boot项目的时候,自需要添加web,mysql,mybatis三个选项即可 <?xml version="1. ...
- Java NIO学习之Buffer
Bufer的capacity,position和limit: capacity: 表示buffer的容量. position: 写数据到Buffer中时: 表示当前的位置.初始的position值为0 ...
- CSS3简单画出3d图形
1.气球 2.泳圈 1.2两图实现代码分别如下: <html> <head> <meta charset="utf-8"> <meta h ...
- 原生js实现淘宝图片切换
这个淘宝图片切换具体效果就是:鼠标移上底部一行中的小图片,上面大图片区域就会显示对应的图片. gif图片看起来还挺酷的,其实实现很简单,用原生js绑定事件改变大图片区域的src. 上代码,html部分 ...
- 1023. Have Fun with Numbers (20)
生词以及在文中意思 duplication 重复 permutation 排列 property 属性 import java.util.Scanner; public class Main { pu ...
- 2016/12/20 dplの课练
1.个人博客的文件,只输出学生姓名 cat 111 |sed 's/[0-9a-zA-Z:/. -]//g' 2.只输出每个学生的url cat 111 |sed 's/.*:\/\///g' 3. ...
- Linux:Gentoo系统的安装笔记(三)
这期笔记将是gentoo安装的最后一期了,虽然已经配置内核了,但是也要完成剩下的安装步骤,这离安装完成已经不远了,继续加油!!! 如果中断了安装,请看第二期的笔记进行恢复安装,但请重新编译一次内核,否 ...