C. Neko does Maths
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Neko loves divisors. During the latest number theory lesson, he got an interesting exercise from his math teacher.

Neko has two integers aa and bb. His goal is to find a non-negative integer kk such that the least common multiple of a+ka+k and b+kb+k is the smallest possible. If there are multiple optimal integers kk, he needs to choose the smallest one.

Given his mathematical talent, Neko had no trouble getting Wrong Answer on this problem. Can you help him solve it?

Input

The only line contains two integers aa and bb (1≤a,b≤1091≤a,b≤109).

Output

Print the smallest non-negative integer kk (k≥0k≥0) such that the lowest common multiple of a+ka+k and b+kb+k is the smallest possible.

If there are many possible integers kk giving the same value of the least common multiple, print the smallest one.

Examples
input

Copy
6 10
output

Copy
2
input

Copy
21 31
output

Copy
9
input

Copy
5 10
output

Copy
0
Note

In the first test, one should choose k=2k=2, as the least common multiple of 6+26+2 and 10+210+2 is 2424, which is the smallest least common multiple possible.

题意:给出两个整数a,b,求出使(a+k)*(b+k)/gcd(a+k,b+k)的值最小的k,如果有多组答案求出最小的k

题解:gcd(a+k,b+k)=gcd(a-b,b+k),所以gcd(a+k,b+k)一定是(a-b)的一个因子,也就是说a+k一定是(a-b)的因子的倍数,即a+k=q*t,所以直接枚举(a-b)的因子q,求出相应的q*t,然后就可以根据k=q*t-a求出k,然后就可以求出最小的(a+k)*(b+k)/gcd(a+k,b+k)了

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<vector>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
#define debug(x) cout<< #x <<" is "<<x<<endl;
int gcd(ll x,ll y){
if(y==)return x;
return gcd(y,x%y);
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
if(n<m)swap(n,m);
ll xx=n-m;
ll ans=-;
ll ans0=;
for(ll i=;i*i<=xx;i++){
if(xx%i==){
ll y1=n/i;
if(n%i)y1++;
y1*=i;
y1-=n;
if((y1+n)*(y1+m)/gcd(y1+n,y1+m)<ans||ans==-){
ans=(y1+n)*(y1+m)/gcd(y1+n,y1+m);
ans0=y1;
}
else if((y1+n)*(y1+m)/gcd(y1+n,y1+m)==ans&&y1<ans0){
ans0=y1;
}
ll y2=n/(xx/i);
if(n%(xx/i))y2++;
y2*=(xx/i);
y2-=n;
if((y2+n)*(y2+m)/gcd(y2+n,y2+m)<ans||ans==-){
ans=(y2+n)*(y2+m)/gcd(y2+n,y2+m);
ans0=y2;
}
else if((y2+n)*(y2+m)/gcd(y2+n,y2+m)==ans&&y2<ans0){
ans0=y2;
}
}
}
printf("%lld\n",ans0);
return ;
}

[ Codeforces Round #554 (Div. 2) C]的更多相关文章

  1. Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)

    题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k     算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...

  2. Codeforces Round #554 (Div. 2) 1152B. Neko Performs Cat Furrier Transform

    学了这么久,来打一次CF看看自己学的怎么样吧 too young too simple 1152B. Neko Performs Cat Furrier Transform 题目链接:"ht ...

  3. Codeforces Round #554 (Div. 2) 1152A - Neko Finds Grapes

    学了这么久,来打一次CF看看自己学的怎么样吧 too young too simple 1152A - Neko Finds Grapes 题目链接:"https://codeforces. ...

  4. Codeforces Round #554 (Div. 2)-C(gcd应用)

    题目链接:https://codeforces.com/contest/1152/problem/C 题意:给定a,b(<1e9).求使得lcm(a+k,b+k)最小的k,若有多个k,求最小的k ...

  5. Codeforces Round #554 (Div. 2) D 贪心 + 记忆化搜索

    https://codeforces.com/contest/1152/problem/D 题意 给你一个n代表合法括号序列的长度一半,一颗有所有合法括号序列构成的字典树上,选择最大的边集,边集的边没 ...

  6. Codeforces Round #554 (Div. 2) C 数论

    https://codeforces.com/contest/1152/problem/C 题意 a和b,找到k,使得lcm(a+k,b+k)最小(a,b:1e9) 题解 设gcd=gcd(a+k,b ...

  7. Codeforces Round #554 (Div. 2) C.Neko does Maths (gcd的运用)

    题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给定两个正整数a,b,其中(1<=a,b<=1e9),求一个正整数k(0&l ...

  8. CodeForces Round #554 Div.2

    A. Neko Finds Grapes 代码: #include <bits/stdc++.h> using namespace std; ; int N, M; int a[maxn] ...

  9. Codeforces Round #554 (Div. 2)自闭记

    A 签到 #include<bits/stdc++.h> using namespace std; ],t[],ans; int main() { scanf("%d%d&quo ...

  10. Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)

    传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...

随机推荐

  1. Go 基础 坑

    1.字符串空为"" 2. 传递的数组是原数组的拷贝,所以是无法通过传递数组的方法去修改原地址的数据的.在GO语言中除了切片(slice).集合(map).通道(channel)和接 ...

  2. 电脑小白和ta的小白电脑——Git的使用

    简单介绍Git的安装和基本指令,不要抱太大希望QAQ 看完这篇博客,最多学会如何向远程库上传和从远程库拉取项目,复杂功能要 做中学! (一)Git的安装 1.下载 (1)官网下载地址: https:/ ...

  3. Visual Studio+VAssistX自动添加注释,函数头注释,文件头注释

    转载:http://blog.csdn.net/xzytl60937234/article/details/70455777 在VAssistX中为C++提供了比较规范注释模板,用这个注释模板为编写的 ...

  4. Windows下使用service.bat安装tomcat服务, 启动停止tomcat服务

    在项目开发过程中,以前只是在Eclipse中配置.启动.停止tomcat服务器 如果只想在机器中使用tomcat服务器,而不想安装MyEclipse,可以使用service.bat 将tomcat安装 ...

  5. xenserver添加磁盘后挂载为本地存储库并且删除

    方法一: 1.1:查看磁盘列表 fdisk -l [root@xenserver ~]# fdisk -l Disk /dev/sdb: 7999.4 GB, 7999376588800 bytes, ...

  6. PLL详解

    PLL  时钟是时序逻辑的灵魂. 在实际应用中,时钟信号在频率或者相位上通常并不满足直接使用的需求,而内部时序逻辑又只能对时钟信号进行整数倍的分频,并且不能保证产生新时钟信号的相位稳定性,所以需要用到 ...

  7. 常用的数学函数-S

    // abs — 获取[数值]的绝对值 $; echo abs($int).'<br>'; $float=-2.34; echo abs($float).'<hr>'; //c ...

  8. Java赋值

    public class Car { 方法1: private String 品牌="初始化值"; private String 价格; 方法2: public Car(Strin ...

  9. div css 图片和文字上下居中对齐

    想要图片和文字水平居中对齐很容易,可今天做这个树的时候,遇到了要将图片上下居中.这下就不知道怎么搞. 拿手册看也看不出所以然来,不同的浏览器对DIV的支持不一个,目前最好的浏览器是Firefox. 这 ...

  10. java对excel操作

    package test; import jxl.*; import jxl.Cell; import java.io.*; /** * 读取excel */ public class TestExc ...