spark MLlib collaborativeFilltering学习
package ML.collaborativeFilltering; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaDoubleRDD;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.recommendation.ALS;
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel;
import org.apache.spark.mllib.recommendation.Rating;
import scala.Tuple2; /**
* TODO
*
* @ClassName: example
* @author: DingH
* @since: 2019/4/10 16:03
*/
public class example {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("Java Collaborative Filtering Example");
JavaSparkContext jsc = new JavaSparkContext(conf); // Load and parse the data
String path = "D:\\IdeaProjects\\SimpleApp\\src\\main\\resources\\data\\mllib\\als\\test.data";
JavaRDD<String> data = jsc.textFile(path);
JavaRDD<Rating> ratings = data.map(new Function<String, Rating>() {
public Rating call(String s) {
String[] sarray = s.split(",");
return new Rating(Integer.parseInt(sarray[0]), Integer.parseInt(sarray[1]), Double.parseDouble(sarray[2]));
}
}
);
int ranks = 10;
int numIterations = 10;
MatrixFactorizationModel model = ALS.train(ratings.rdd(), ranks, numIterations); JavaRDD<Tuple2<Object, Object>> userProducts = ratings.map(new Function<Rating, Tuple2<Object, Object>>() {
public Tuple2<Object, Object> call(Rating r) {
return new Tuple2<Object, Object>(r.user(), r.product());
}
}
);
JavaPairRDD<Tuple2<Integer, Integer>, Double> predictions = JavaPairRDD.fromJavaRDD(model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map(
new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
}
}
)); JavaRDD<Tuple2<Double, Double>> ratesAndPreds = JavaPairRDD.fromJavaRDD(ratings.map(
new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
}
}
)).join(predictions).values(); double MSE = JavaDoubleRDD.fromRDD(ratesAndPreds.map(
new Function<Tuple2<Double, Double>, Object>() {
public Object call(Tuple2<Double, Double> pair) {
Double err = pair._1() - pair._2();
return err * err;
}
}
).rdd()).mean(); System.out.println("Mean Squared Error = " + MSE); }
}
spark MLlib collaborativeFilltering学习的更多相关文章
- Spark MLlib知识点学习整理
MLlib的设计原理:把数据以RDD的形式表示,然后在分布式数据集上调用各种算法.MLlib就是RDD上一系列可供调用的函数的集合. 操作步骤: 1.用字符串RDD来表示信息. 2.运行MLlib中的 ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep ...
- spark MLLib的基础统计部分学习
参考学习链接:http://www.itnose.net/detail/6269425.html 机器学习相关算法,建议初学者去看看斯坦福的机器学习课程视频:http://open.163.com/s ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1 http://blog.csdn.net/sunbow0 Spark ML ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2 http://blog.csdn.net/sunbow0 第二章Deep ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...
- spark MLlib Classification and regression 学习
二分类:SVMs,logistic regression,decision trees,random forests,gradient-boosted trees,naive Bayes 多分类: ...
随机推荐
- [BZOJ 4819] [SDOI 2017] 新生舞会
Description 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴. 有 \(n\) 个男生和 \(n\) 个女生参加舞会买一个男生和一个女生一起跳舞,互为舞伴. C ...
- git 操作命令详解
git 什么是git 开源的分布式版本控制系统, 用于高效的管理大小项目和文件 代码管理工具 防止代码丢失, 做备份 代码版本管控, 设置节点, 多版本切换 建立分支各自开发, 互不影响, 方便合并 ...
- 【并发编程】【JDK源码】J.U.C--组件FutureTask、ForkJoin、BlockingQueue
原文:慕课网实战·高并发探索(十三):并发容器J.U.C -- 组件FutureTask.ForkJoin.BlockingQueue FutureTask FutureTask是J.U.C中的类,是 ...
- [powershell]解决Win7SP1 powershell底色变成黑色
删除补丁KB3191566 重新安装: https://docs.microsoft.com/en-us/powershell/scripting/install/installing-windows ...
- MySQL安装-windows安装
windows下安装MySQL 在windows下面安装MySQL 本文以5.7.17为示例 MySQL下载 官网:https://dev.mysql.com/downloads/mysql/ 本次安 ...
- pycharm terminal 'import' 不是内部或外部命令,也不是可运行的程序
https://blog.csdn.net/jiangyanting2011/article/details/79065778 Python import同级目录报错 pycharm的py文件impo ...
- elk中fliebeat的配置文件
fliebeat----> kafka的配置文件 # cat filebeat.yml|egrep -v "^$|^#"|grep -v "^ #" fi ...
- 抓包工具Charles基本用法
我们在进行B/S架构的Web项目开发时,在前端页面与后台交互的调试的时候,通常使用在JSP中加入“debugger;”断点,然后使用浏览器的F12开发者工具来查看可能出错的地方的数据.或者使用Http ...
- Java设计模式之抽象工厂
概述 设计模式(Design Pattern)是一套被反复使用.多数人知晓的.经过分类的.代码设计经验的总结. 使用设计模式的目的:为了代码可重用性.让代码更容易被他人理解.保证代码可靠性. 设计模式 ...
- Highcharts开发图表
1.折线图 显示一个静态的折线图,显示如下数据 星期 温度 周一 9~14 周二 4~10 周三 1~7 周四 4~9 周五 5~11 周六 8~13 周天 7~10 新建demo1.html < ...