spark MLlib collaborativeFilltering学习
package ML.collaborativeFilltering; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaDoubleRDD;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.recommendation.ALS;
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel;
import org.apache.spark.mllib.recommendation.Rating;
import scala.Tuple2; /**
* TODO
*
* @ClassName: example
* @author: DingH
* @since: 2019/4/10 16:03
*/
public class example {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("Java Collaborative Filtering Example");
JavaSparkContext jsc = new JavaSparkContext(conf); // Load and parse the data
String path = "D:\\IdeaProjects\\SimpleApp\\src\\main\\resources\\data\\mllib\\als\\test.data";
JavaRDD<String> data = jsc.textFile(path);
JavaRDD<Rating> ratings = data.map(new Function<String, Rating>() {
public Rating call(String s) {
String[] sarray = s.split(",");
return new Rating(Integer.parseInt(sarray[0]), Integer.parseInt(sarray[1]), Double.parseDouble(sarray[2]));
}
}
);
int ranks = 10;
int numIterations = 10;
MatrixFactorizationModel model = ALS.train(ratings.rdd(), ranks, numIterations); JavaRDD<Tuple2<Object, Object>> userProducts = ratings.map(new Function<Rating, Tuple2<Object, Object>>() {
public Tuple2<Object, Object> call(Rating r) {
return new Tuple2<Object, Object>(r.user(), r.product());
}
}
);
JavaPairRDD<Tuple2<Integer, Integer>, Double> predictions = JavaPairRDD.fromJavaRDD(model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map(
new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
}
}
)); JavaRDD<Tuple2<Double, Double>> ratesAndPreds = JavaPairRDD.fromJavaRDD(ratings.map(
new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
}
}
)).join(predictions).values(); double MSE = JavaDoubleRDD.fromRDD(ratesAndPreds.map(
new Function<Tuple2<Double, Double>, Object>() {
public Object call(Tuple2<Double, Double> pair) {
Double err = pair._1() - pair._2();
return err * err;
}
}
).rdd()).mean(); System.out.println("Mean Squared Error = " + MSE); }
}
spark MLlib collaborativeFilltering学习的更多相关文章
- Spark MLlib知识点学习整理
MLlib的设计原理:把数据以RDD的形式表示,然后在分布式数据集上调用各种算法.MLlib就是RDD上一系列可供调用的函数的集合. 操作步骤: 1.用字符串RDD来表示信息. 2.运行MLlib中的 ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep ...
- spark MLLib的基础统计部分学习
参考学习链接:http://www.itnose.net/detail/6269425.html 机器学习相关算法,建议初学者去看看斯坦福的机器学习课程视频:http://open.163.com/s ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1 http://blog.csdn.net/sunbow0 Spark ML ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2 http://blog.csdn.net/sunbow0 第二章Deep ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...
- spark MLlib Classification and regression 学习
二分类:SVMs,logistic regression,decision trees,random forests,gradient-boosted trees,naive Bayes 多分类: ...
随机推荐
- tornado自定义session
这开始之前我们先了解以下什么是cookie和session 简单的说: cookie是保存在客户端的键值对 session是保存在服务端的键值对 session依赖与cookie 在Django中,可 ...
- UOJ#310.【UNR #2】黎明前的巧克力(FWT)
题意 给出 \(n\) 个数 \(\{a_1, \cdots, a_n\}\),从中选出两个互不相交的集合(不能都为空),使得第一个集合与第二个集合内的数的异或和相等,求总方案数 \(\bmod 99 ...
- 修改帝国cms栏目后,如何更新
修改栏目后,要依次做如下更新: 1. 2. 3. 如果只是修改了栏目里的属性,只需要做第三步就行了
- ant在windows及linux环境下安装
ant下载 http://ant.apache.org/ https://ant.apache.org/bindownload.cgi 历史版本 ant在windows下安装 解压到D盘 新建系统变量 ...
- Elastalert安装及使用
如果在windows 64平台报错:执行 pip install python-magic-bin==0.4.14修复https://stackoverflow.com/questions/18374 ...
- beego框架的最简单登入演示
一.controllers逻辑代码 func (c *UserController) Get() { c.TplName="login.html" } func (c *UserC ...
- filebeat+logstash配置
一. filebeat.yml的配置 filebeat.prospectors:- input_type: log paths: - /tmp/logs/optimus-activity-api.lo ...
- MongoDB 高可用集群副本集+分片搭建
MongoDB 高可用集群搭建 一.架构概况 192.168.150.129192.168.150.130192.168.150.131 参考文档:https://www.cnblogs.com/va ...
- 剑指Offer_编程题_23
题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. class Solution { public: ...
- SpringBoot项目@RestController使用 redirect 重定向无效
Spring MVC项目中页面重定向一般使用return "redirect:/other/controller/";即可. 而Spring Boot当我们使用了@RestCont ...