spark算子
1.map
一条一条读取
def map(): Unit ={
val list = List("张无忌", "赵敏", "周芷若")
val listRDD = sc.parallelize(list)
val nameRDD = listRDD.map(name => "Hello " + name)
nameRDD.foreach(name => println(name))
}
2.flatMap
扁平化
def flatMap(): Unit ={
val list = List("张无忌 赵敏","宋青书 周芷若")
val listRDD = sc.parallelize(list) val nameRDD = listRDD.flatMap(line => line.split(" ")).map(name => "Hello " + name)
nameRDD.foreach(name => println(name))
}
3.mapPartitions
一次读取一个分区数据
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list = List(1, 2, 3, 4, 5, 6)
val rdd = spark.parallelize(list, 2)
rdd.foreach(println)
val rdd2 = rdd.mapPartitions(iterator => {
val newList = new ListBuffer[String]
while (iterator.hasNext) {
newList.append("hello" + iterator.next())
}
newList.toIterator
}) rdd2.foreach(name => println(name))
} }
4.mapPartitionsWithIndex
一次读取一个分区数据,并且知道是哪个分区的
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list = List(1, 2, 3, 4, 5, 6)
val rdd = spark.parallelize(list, 2)
val rdd2 = rdd.mapPartitionsWithIndex((index, iterator) => {
val newList = new ListBuffer[String]
while (iterator.hasNext) {
newList.append(index + "_" + iterator.next())
}
newList.toIterator
}) rdd2.foreach(name => println(name))
} }
5.reduce
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list = List(1, 2, 3, 4, 5, 6)
val rdd = spark.parallelize(list)
val result = rdd.reduce((x, y) => x + y)
println(result)
} }
6.reduceBykey
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list = List(("武当", 99), ("少林", 97), ("武当", 89), ("少林", 77))
val rdd = spark.parallelize(list)
val rdd2 = rdd.reduceByKey(_ + _)
rdd2.foreach(tuple => println(tuple._1 + ":" + tuple._2))
}
}
7.union
合并,但不去重
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list1 = List(1,2,3,4)
val list2 = List(3,4,5,6)
val rdd1 = spark.parallelize(list1)
val rdd2 = spark.parallelize(list2)
rdd1.union(rdd2).foreach(println)
}
}
8.join
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list1 = List((1, "东方不败"), (2, "令狐冲"), (3, "林平之"))
val list2 = List((1, 99), (2, 98), (3, 97))
val rdd1 = spark.parallelize(list1)
val rdd2 = spark.parallelize(list2)
val rdd3 = rdd1.join(rdd2)
rdd3.foreach(tuple => {
val id = tuple._1
val new_tuple = tuple._2
val name = new_tuple._1
val score = new_tuple._2
println("学号:" + id + " 姓名:" + name + " 成绩:" + score)
})
}
}
9.groupbyKey
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list = List(("武当", "张三丰"), ("峨眉", "灭绝师太"), ("武当", "宋青书"), ("峨眉", "周芷若"))
val rdd1 = spark.parallelize(list)
val rdd2 = rdd1.groupByKey()
rdd2.foreach(t => {
val menpai = t._1
val iterator = t._2.iterator
var people = ""
while (iterator.hasNext) people = people + iterator.next + " "
println("门派:" + menpai + "人员:" + people)
})
}
}
10.cartesian
笛卡尔积
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list1 = List("A", "B")
val list2 = List(1, 2, 3)
val list1RDD = spark.parallelize(list1)
val list2RDD = spark.parallelize(list2)
list1RDD.cartesian(list2RDD).foreach(t => println(t._1 + "->" + t._2))
}
}
11.filter
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list = List(1,2,3,4,5,6,7,8,9,10)
val listRDD = spark.parallelize(list)
listRDD.filter(num => num % 2 ==0).foreach(print(_))
}
}
12.distinct
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list = List(1,1,2,2,3,3,4,5)
val rdd = spark.parallelize(list)
rdd.distinct().foreach(println)
}
}
13.intersection
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list1 = List(1,2,3,4)
val list2 = List(3,4,5,6)
val list1RDD = spark.parallelize(list1)
val list2RDD = spark.parallelize(list2)
list1RDD.intersection(list2RDD).foreach(println(_))
}
}
14.coalesce
分区有多-->少
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list = List(1,2,3,4,5)
spark.parallelize(list,3).coalesce(1).foreach(println(_))
}
}
15.repartition
进行重分区
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list = List(1,2,3,4)
val listRDD = spark.parallelize(list,1)
listRDD.repartition(2).foreach(println(_))
}
}
16.repartitionAndSortWithinPartitions
在给定的partitioner内部进行排序,性能比repartition要高。
import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list = List(1, 4, 55, 66, 33, 48, 23)
val listRDD = spark.parallelize(list, 1)
listRDD.map(num => (num, num))
.repartitionAndSortWithinPartitions(new HashPartitioner(2))
.mapPartitionsWithIndex((index, iterator) => {
val listBuffer: ListBuffer[String] = new ListBuffer
while (iterator.hasNext) {
listBuffer.append(index + "_" + iterator.next())
}
listBuffer.iterator
}, false)
.foreach(println(_))
}
}
17.cogroup
import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list1 = List((1, "www"), (2, "bbs"))
val list2 = List((1, "cnblog"), (2, "cnblog"), (3, "very"))
val list3 = List((1, "com"), (2, "com"), (3, "good")) val list1RDD = spark.parallelize(list1)
val list2RDD = spark.parallelize(list2)
val list3RDD = spark.parallelize(list3) list1RDD.cogroup(list2RDD,list3RDD).foreach(tuple =>
println(tuple._1 + " " + tuple._2._1 + " " + tuple._2._2 + " " + tuple._2._3))
}
}
18.sortByKey
import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list = List((99, "张三丰"), (96, "东方不败"), (66, "林平之"), (98, "聂风"))
spark.parallelize(list).sortByKey(false).foreach(tuple => println(tuple._2 + "->" + tuple._1))
}
}
19.aggregateByKey
import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list = List("you,jump", "i,jump")
spark.parallelize(list)
.flatMap(_.split(","))
.map((_, 1))
.aggregateByKey(0)(_ + _, _ + _)
.foreach(tuple => println(tuple._1 + "->" + tuple._2))
}
}
apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession import scala.collection.mutable.ListBuffer object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf) def main(args: Array[String]): Unit = {
val list = List(("武当", "张三丰"), ("峨眉", "灭绝师太"), ("武当", "宋青书"), ("峨眉", "周芷若"))
val rdd1 = spark.parallelize(list)
val rdd2 = rdd1.groupByKey()
rdd2.foreach(t => {
val menpai = t._1
val iterator = t._2.iterator
var people = ""
while (iterator.hasNext) people = people + iterator.next + " "
println("门派:" + menpai + "人员:" + people)
})
}
}
spark算子的更多相关文章
- (转)Spark 算子系列文章
http://lxw1234.com/archives/2015/07/363.htm Spark算子:RDD基本转换操作(1)–map.flagMap.distinct Spark算子:RDD创建操 ...
- Spark算子总结及案例
spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Tran ...
- UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现
UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import ...
- UserView--第一种方式set去重,基于Spark算子的java代码实现
UserView--第一种方式set去重,基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import java.util.Ha ...
- spark算子之DataFrame和DataSet
前言 传统的RDD相对于mapreduce和storm提供了丰富强大的算子.在spark慢慢步入DataFrame到DataSet的今天,在算子的类型基本不变的情况下,这两个数据集提供了更为强大的的功 ...
- Spark算子总结(带案例)
Spark算子总结(带案例) spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key ...
- Spark算子---实战应用
Spark算子实战应用 数据集 :http://grouplens.org/datasets/movielens/ MovieLens 1M Datase 相关数据文件 : users.dat --- ...
- spark算子集锦
Spark 是大数据领域的一大利器,花时间总结了一下 Spark 常用算子,正所谓温故而知新. Spark 算子按照功能分,可以分成两大类:transform 和 action.Transform 不 ...
- Spark算子使用
一.spark的算子分类 转换算子和行动算子 转换算子:在使用的时候,spark是不会真正执行,直到需要行动算子之后才会执行.在spark中每一个算子在计算之后就会产生一个新的RDD. 二.在编写sp ...
- Spark:常用transformation及action,spark算子详解
常用transformation及action介绍,spark算子详解 一.常用transformation介绍 1.1 transformation操作实例 二.常用action介绍 2.1 act ...
随机推荐
- Django+Vue打造购物网站(六)
商品详情页功能 商品详情页和CategoryViewSet类似,只需要多继承一个类(mixins.RetrieveModelMixin)就可以了 class GoodsListViewSet(mixi ...
- [LOJ10121] 与众不同
题目类型:\(DP\)+\(RMQ\) 传送门:>Here< 题意:给定一个长度为\(N\)的序列,并给出\(M\)次询问.询问区间\([L,R]\)内的最长完美序列.所谓完美序列就是指连 ...
- CF932 E. Team Work 结题报告
CF932 E. Team Work 题意 求 \[ \sum_{i=0}^n\binom{n}{i}i^k \] 其中\(n\le 10^9,k\le 5000\),对\(mod=998244353 ...
- kafka 发送确认参数acks的几种模式
1. acks=0 意味着生产者能够通过网络吧消息发送出去,那么就认为消息已成功写入Kafka 一定会丢失一些数据 2. acks=1 意味着首领在疏导消息并把它写到分区数据问津是会返回确认或者错误响 ...
- virtual-dom
virtual-dom的历史 react最早研究virtual-dom,后来react火了之后,大家纷纷研究react的高性能实现,出现了2个流派,一是研究react算法的算法派,(virtual-d ...
- Entity Framework入门教程(16)---Enum
EF DbFirst模式中的枚举类型使用 这一节介绍EF DbFirst模式中的Enum(枚举类型),CodeFirst模式中的Enum会在以后的EF CoreFirst系列中介绍.EF5中添加了对E ...
- [物理学与PDEs]第1章第5节 Maxwell 方程组的数学结构, 电磁场的波动性 5.3 电磁场的波动性, 自由电磁波
1. 由 Maxwell 方程组易知 $$\beex \bea \cfrac{1}{c^2}\cfrac{\p^2{\bf E} }{\p t^2}-\lap{\bf E} &=-\sex{ ...
- Java之final关键字详解
1. 修饰类 当用final去修饰一个类的时候,表示这个类不能被继承. 注意: a. 被final修饰的类,final类中的成员变量可以根据自己的实际需要设计为fianl. b. final类中的成员 ...
- kerbose常用操作
1.查看有那些用户认证 kadmin.local -q "list_principals" 2.用keytab文件进行认证 kinit -kt /root/keytab/hive. ...
- elk搭建日志系统
参考:https://www.cnblogs.com/yuhuLin/p/7018858.html 以上这篇文章已经写的很好很全了,之所以再自己写一遍大概就是记录一下,以后可能会有用吧 安装elast ...