vertx的ShardData共享数据
数据类型
一共4种
synchronous shared maps (local)
asynchronous maps (local or cluster-wide)
asynchronous locks (local or cluster-wide)
asynchronous counters (local or cluster-wide)
synchronous shared maps (local)
数据结构: Map<key,Map<key,value>> , LocalMapImpl 类, 注意scope:vertx instances Global Map, 生命周期结束后或Application临界点时调用remove、clean,close方法,防止内存泄露等问题
private final ConcurrentMap<String, LocalMap<?, ?>> maps;
private final String name;
private final ConcurrentMap<K, V> map = new ConcurrentHashMap<>();//储存的数据结构 LocalMapImpl(String name, ConcurrentMap<String, LocalMap<?, ?>> maps) {
this.name = name;
this.maps = maps;
}
asynchronous maps (local or cluster-wide) cluster: zookeeper
利用zookeeper作集中式存储,V 采用序列化/反序列化, cluster模式效率不是很高
public <K, V> void getAsyncMap(String name, Handler<AsyncResult<AsyncMap<K, V>>> resultHandler) {
Objects.requireNonNull(name, "name");
Objects.requireNonNull(resultHandler, "resultHandler");
if (clusterManager == null) {//是否启用集群
/**
* local: Map<key,Map<key,Holder<V>>>
* 新增了插入时间单位纳秒,和TTL有效时间防止内存越来越大,连续内存不足导致内存溢出
*/
getLocalAsyncMap(name, resultHandler);
} else {
/**
* 获取name,不存在创建zk path
*/
clusterManager.<K, V>getAsyncMap(name, ar -> {
if (ar.succeeded()) {
// Wrap it
resultHandler.handle(Future.succeededFuture(new WrappedAsyncMap<K, V>(ar.result())));
} else {
resultHandler.handle(Future.failedFuture(ar.cause()));
}
});
}
}
cluster model:
public void put(K k, V v, Handler<AsyncResult<Void>> completionHandler) {
put(k, v, Optional.empty(), completionHandler);
} public void put(K k, V v, long timeout, Handler<AsyncResult<Void>> completionHandler) {
put(k, v, Optional.of(timeout), completionHandler);
} /**
* 添加数据 key/value
*/
private void put(K k, V v, Optional<Long> timeoutOptional, Handler<AsyncResult<Void>> completionHandler) {
assertKeyAndValueAreNotNull(k, v)//数据不为null
.compose(aVoid -> checkExists(k))//检查key是否存在
.compose(checkResult -> checkResult ? setData(k, v):create(k, v))//存在就赋值,不存在就创建
.compose(aVoid -> {
//keyPath 方法 k转化为字节流再 Base64 编码
JsonObject body = new JsonObject().put(TTL_KEY_BODY_KEY_PATH, keyPath(k)); if (timeoutOptional.isPresent()) {//数据是否有生存时效
asyncMapTTLMonitor.addAsyncMapWithPath(keyPath(k), this);
body.put(TTL_KEY_BODY_TIMEOUT, timeoutOptional.get());
} else body.put(TTL_KEY_IS_CANCEL, true); //publish 所有node 消息
vertx.eventBus().publish(TTL_KEY_HANDLER_ADDRESS, body);
Future<Void> future = Future.future();
future.complete();
return future;
})
.setHandler(completionHandler);/**处理完成回调*/
} /**
* 先查询再删除
*/
public void remove(K k, Handler<AsyncResult<V>> asyncResultHandler) {
assertKeyIsNotNull(k).compose(aVoid -> {
Future<V> future = Future.future();
get(k, future.completer()); //获取数据
return future;
}).compose(value -> {
Future<V> future = Future.future();
if (value != null) {
return delete(k, value); //删除
} else {
future.complete();
}
return future;
}).setHandler(asyncResultHandler);/**处理完成回调*/
} /**
* 获取data
*/
public void get(K k, Handler<AsyncResult<V>> asyncResultHandler) {
assertKeyIsNotNull(k) //检查k不为null
.compose(aVoid -> checkExists(k)) //检查是否存在
.compose(checkResult -> {
Future<V> future = Future.future();
if (checkResult) {
//获取data
ChildData childData = curatorCache.getCurrentData(keyPath(k));
if (childData != null && childData.getData() != null) {
try {
V value = asObject(childData.getData());//反序列化
future.complete(value);
} catch (Exception e) {
future.fail(e);
}
} else {
future.complete();
}
} else {
//ignore
future.complete();
}
return future;
})
.setHandler(asyncResultHandler);/**处理完成回调*/
}
asynchronous locks (local or cluster-wide) cluster: zookeeper
/**
* 获取锁
*/
public void getLock(String name, Handler<AsyncResult<Lock>> resultHandler) {
Objects.requireNonNull(name, "name");
Objects.requireNonNull(resultHandler, "resultHandler");
//默认超时 10s
getLockWithTimeout(name, DEFAULT_LOCK_TIMEOUT, resultHandler);
} public void getLockWithTimeout(String name, long timeout, Handler<AsyncResult<Lock>> resultHandler) {
Objects.requireNonNull(name, "name");
Objects.requireNonNull(resultHandler, "resultHandler");
Arguments.require(timeout >= , "timeout must be >= 0");
if (clusterManager == null) {//是否是集群模式
getLocalLock(name, timeout, resultHandler);
} else {
clusterManager.getLockWithTimeout(name, timeout, resultHandler);
}
}
local model:
/**
* 释放lock
*/
public synchronized void release() {
LockWaiter waiter = pollWaiters();
if (waiter != null) {
waiter.acquire(this);//queue中的下一个 owner getLock
} else {
owned = false;
}
} /**
* Queue poll
*/
private LockWaiter pollWaiters() {
//使用while用途:getlock超时情况
while (true) {
LockWaiter waiter = waiters.poll();
if (waiter == null) {
return null;
} else if (!waiter.timedOut) {
return waiter;
}
}
} /**
* 获取锁
* 采用状态来判断,存在并发问题所以采用 synchronized
*/
public void doAcquire(Context context, long timeout, Handler<AsyncResult<Lock>> resultHandler) {
synchronized (this) {
if (!owned) {
// 获取得到 lock
owned = true;
lockAcquired(context, resultHandler);
} else {
//添加到wait Queue 中,并添加延时任务getLockTimeOut
waiters.add(new LockWaiter(this, context, timeout, resultHandler));
}
}
}
cluster model:
/**
* 利用ZK curator客户端自带实现的 DistributedLock
*/
public void getLockWithTimeout(String name, long timeout, Handler<AsyncResult<Lock>> resultHandler) {
ContextImpl context = (ContextImpl) vertx.getOrCreateContext();//获取context
// 在 internalBlocking Pool 执行有序阻塞任务,利用Queque保证有序(FIFO)
context.executeBlocking(() -> {
ZKLock lock = locks.get(name);
if (lock == null) {
//初始不可重入的互斥锁
InterProcessSemaphoreMutex mutexLock = new InterProcessSemaphoreMutex(curator, ZK_PATH_LOCKS + name);
lock = new ZKLock(mutexLock);
}
try {
//获取锁直到 timeout
if (lock.getLock().acquire(timeout, TimeUnit.MILLISECONDS)) {
locks.putIfAbsent(name, lock);
return lock;
} else {
throw new VertxException("Timed out waiting to get lock " + name);
}
} catch (Exception e) {
throw new VertxException("get lock exception", e);
}
}, resultHandler);
} public void release() {
// 使用 worker Pool 释放锁
vertx.executeBlocking(future -> {
try {
lock.release();
} catch (Exception e) {
log.error(e);
}
future.complete();
}, false, null);
}
asynchronous counters (local or cluster-wide) cluster: zookeeper
local model: counters 采用 AtomicLong
private void getLocalCounter(String name, Handler<AsyncResult<Counter>> resultHandler) {
//获取计数器,AsynchronousCounter类对AtomicLong的封装
Counter counter = localCounters.computeIfAbsent(name, n -> new AsynchronousCounter(vertx));
Context context = vertx.getOrCreateContext();
context.runOnContext(v -> resultHandler.handle(Future.succeededFuture(counter)));
}
cluster model:
/**
* 使用ZK curator客户端自带实现的 DistributedAtomicLong
*/
public void getCounter(String name, Handler<AsyncResult<Counter>> resultHandler) {
//使用worker Pool执行阻塞任务
vertx.executeBlocking(future -> {
try {
Objects.requireNonNull(name);
future.complete(new ZKCounter(name, retryPolicy));
} catch (Exception e) {
future.fail(new VertxException(e));
}
}, resultHandler);
}
vertx的ShardData共享数据的更多相关文章
- iOS: 在iPhone和Apple Watch之间共享数据: App Groups
我们可以在iPhone和Apple Watch间通过app groups来共享数据.方法如下: 首先要在dev center添加一个新的 app group: 接下来创建一个新的single view ...
- 应用间共享数据方法(一)---sharepreferce
SharedPreferences类,它是一个轻量级的存储类,特别适合用于保存软件配置参数. SharedPreferences保存数据,其背后是用xml文件存放数据,文件存放在/data/data/ ...
- controller共享数据
刚开始使用angularjs,能感受到他的强大,也在学习的途中遇到一些问题 一般我们在angularjs中共享数据使用DI的方法,具体代码如下: <script> angular.modu ...
- python 进程间共享数据 (二)
Python中进程间共享数据,除了基本的queue,pipe和value+array外,还提供了更高层次的封装.使用multiprocessing.Manager可以简单地使用这些高级接口. Mana ...
- python 进程间共享数据 (一)
def worker(num, mystr, arr): num.value *= 2 mystr.value = "ok" for i in range(len(arr)): a ...
- Java线程与并发库高级应用-线程范围内共享数据ThreadLocal类
1.线程范围内共享变量 1.1 前奏: 使用一个Map来实现线程范围内共享变量 public class ThreadScopeShareData { static Map<Thread, In ...
- Angularjs调用公共方法与共享数据
这个问题场景是在使用ionic开发页面的过程中发现,多个页面对应的多个controller如何去调用公共方法,比如给ionic引入了toast插件,如何将这个插件的调用变成公共方法或者设置成工具类,因 ...
- 无废话Android之listview入门,自定义的数据适配器、采用layoutInflater打气筒创建一个view对象、常用数据适配器ArrayAdapter、SimpleAdapter、使用ContentProvider(内容提供者)共享数据、短信的备份、插入一条记录到系统短信应用(3)
1.listview入门,自定义的数据适配器 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/and ...
- Nodejs中cluster模块的多进程共享数据问题
Nodejs中cluster模块的多进程共享数据问题 前述 nodejs在v0.6.x之后增加了一个模块cluster用于实现多进程,利用child_process模块来创建和管理进程,增加程序在多核 ...
随机推荐
- Spring MVC 使用介绍(十二)控制器返回结果统一处理
一.概述 在为前端提供http接口时,通常返回的数据需要统一的json格式,如包含错误码和错误信息等字段. 该功能的实现有四种可能的方式: AOP 利用环绕通知,对包含@RequestMapping注 ...
- UOJ14 UER #1 DZY Loves Graph(最小生成树+并查集)
显然可以用可持久化并查集实现.考虑更简单的做法.如果没有撤销操作,用带撤销并查集暴力模拟即可,复杂度显然可以均摊.加上撤销操作,删除操作的复杂度不再能均摊,但注意到我们在删除时就可以知道他会不会被撤销 ...
- Java定义三个点Object...
从Java 5开始,Java语言对方法参数支持一种新写法,叫 可变长度参数列表,其语法就是类型后跟...,表示此处接受的参数为0到多个Object类型的对象,或者是一个Object[]. public ...
- 集合源码分析[2]-AbstractList 源码分析
AbstractList 类型:抽象类 接口的继承以及实现关系 继承AbstractCollection 实现List接口 典型方法实现解析 public List<E> subList( ...
- ubuntu18.04 使用管理员权限
最近在ubuntu系统安装koa脚手架koa-generator初始化项目,报错提示要使用管理员权限执行命令. 正常情况下使用 sudo su 命令即可进入管理员权限,使用 su [ 用户名 ] 退出 ...
- CF集萃2
CF1155D - Beautiful Array 题意:给你一个序列和x,你可以选择任意一个子串(可以为空)乘上x,使得得到的序列最大子串和最大.求这个最大值.30w,2s. 解:设fi,0/1/2 ...
- 第四十一篇-android studio 关闭自动保存功能
此方法不可用. 第一步:取消自动保存功能 File > Settings > Appearance & Behavior > System Settings > Syn ...
- golang-Beego-orm创建的坑
Orm使用sqlites不识别问题 Idc string `description:"机房"` 这个description sqlites的数据库不识别.解决方法 去掉descri ...
- Kubernetes之dashboard
部署dashboard $ wget https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommen ...
- 【JS】前端文件下载(无刷新)方法总结
#传统方法 利用iframe 或 form.submit 或 windows.open直接向后端发请求,后端返回文件流,后端处理成功后会直接返回到页面,浏览器会整理并打开自己的保存下载文件机制 . 1 ...