在 JavaScript 中整数和浮点数都属于 Number 数据类型,所有数字都是以 64 位浮点数形式储存,即便整数也是如此。 所以我们在打印 1.00 这样的浮点数的结果是 1 而非 1.00 。在一些特殊的数值表示中,例如金额,这样看上去有点变扭,但是至少值是正确了。然而要命的是,当浮点数做数学运算的时候,你经常会发现一些问题,举几个例子:

// 加法 =====================
// 0.1 + 0.2 = 0.30000000000000004
// 0.7 + 0.1 = 0.7999999999999999
// 0.2 + 0.4 = 0.6000000000000001
// 2.22 + 0.1 = 2.3200000000000003 // 减法 =====================
// 1.5 - 1.2 = 0.30000000000000004
// 0.3 - 0.2 = 0.09999999999999998 // 乘法 =====================
// 19.9 * 100 = 1989.9999999999998
// 19.9 * 10 * 10 = 1990
// 1306377.64 * 100 = 130637763.99999999
// 1306377.64 * 10 * 10 = 130637763.99999999
// 0.7 * 180 = 125.99999999999999
// 9.7 * 100 = 969.9999999999999
// 39.7 * 100 = 3970.0000000000005 // 除法 =====================
// 0.3 / 0.1 = 2.9999999999999996
// 0.69 / 10 = 0.06899999999999999

问题的原因

似乎是不可思议。小学生都会算的题目,JavaScript 不会?我们来看看其真正的原因。

JavaScript 里的数字是采用 IEEE 754 标准的 64 位双精度浮点数。该规范定义了浮点数的格式,对于64位的浮点数在内存中的表示,最高的1位是符号位,接着的11位是指数,剩下的52位为有效数字,具体:

  • 第0位:符号位, s 表示 ,0表示正数,1表示负数;
  • 第1位到第11位:储存指数部分, e 表示 ;
  • 第12位到第63位:储存小数部分(即有效数字),f 表示,

如图:

符号位决定了一个数的正负,指数部分决定了数值的大小,小数部分决定了数值的精度。 IEEE 754规定,有效数字第一位默认总是1,不保存在64位浮点数之中。也就是说,有效数字总是1.xx…xx的形式,其中xx..xx的部分保存在64位浮点数之中,最长可能为52位。因此,JavaScript提供的有效数字最长为53个二进制位(64位浮点的后52位+有效数字第一位的1)。

计算过程

比如在 JavaScript 中计算 0.1 + 0.2时,到底发生了什么呢?

首先,十进制的0.10.2都会被转换成二进制,但由于浮点数用二进制表达时是无穷的,例如。

0.1 -> 0.0001100110011001...(无限)
0.2 -> 0.0011001100110011...(无限)

IEEE 754 标准的 64 位双精度浮点数的小数部分最多支持 53 位二进制位,所以两者相加之后得到二进制为:

0.0100110011001100110011001100110011001100110011001100

因浮点数小数位的限制而截断的二进制数字,再转换为十进制,就成了 0.30000000000000004。所以在进行算术计算时会产生误差。

整数的精度问题

在 Javascript 中,整数精度同样存在问题,先来看看问题:

console.log(19571992547450991); //=> 19571992547450990
console.log(19571992547450991===19571992547450992); //=> true

同样的原因,在 JavaScript 中 Number类型统一按浮点数处理,整数是按最大54位来算最大(253 - 1Number.MAX_SAFE_INTEGER,9007199254740991) 和最小(-(253 - 1)Number.MIN_SAFE_INTEGER,-9007199254740991) 安全整数范围的。所以只要超过这个范围,就会存在被舍去的精度问题。

当然这个问题并不只是在 Javascript 中才会出现,几乎所有的编程语言都采用了 IEEE-745 浮点数表示法,任何使用二进制浮点数的编程语言都会有这个问题,只不过在很多其他语言中已经封装好了方法来避免精度的问题,而 JavaScript 是一门弱类型的语言,从设计思想上就没有对浮点数有个严格的数据类型,所以精度误差的问题就显得格外突出。

解决方案

上面说了这么多问题和原因,这里给出一些解决方案。

类库

通常这种对精度要求高的计算都应该交给后端去计算和存储,因为后端有成熟的库来解决这种计算问题。前端也有几个不错的类库:

Math.js

Math.js 是专门为 JavaScript 和 Node.js 提供的一个广泛的数学库。它具有灵活的表达式解析器,支持符号计算,配有大量内置函数和常量,并提供集成解决方案来处理不同的数据类型
像数字,大数字(超出安全数的数字),复数,分数,单位和矩阵。 功能强大,易于使用。

官网:http://mathjs.org/

GitHub:https://github.com/josdejong/mathjs

decimal.js

为 JavaScript 提供十进制类型的任意精度数值。

官网:http://mikemcl.github.io/decimal.js/

GitHub:https://github.com/MikeMcl/decimal.js

big.js

官网:http://mikemcl.github.io/big.js

GitHub:https://github.com/MikeMcl/big.js/

这几个类库帮我们解决很多这类问题,不过通常我们前端做这类运算通常只用于表现层,应用并不是很多。所以很多时候,一个函数能解决的问题不需要引用一个类库来解决。

下面介绍各个更加简单的解决方案。

整数表示

对于整数,我们可以通过用String类型的表示来取值或传值,否则会丧失精度。

格式化数字、金额、保留几位小数等

如果只是格式化数字、金额、保留几位小数等可以查看这里 https://www.html.cn/archives/7324

浮点数运算

toFixed() 方法

浮点数运算的解决方案有很多,这里给出一种目前常用的解决方案, 在判断浮点数运算结果前对计算结果进行精度缩小,因为在精度缩小的过程总会自动四舍五入。

toFixed() 方法使用定点表示法来格式化一个数,会对结果进行四舍五入。语法为:

numObj.toFixed(digits)

参数 digits 表示小数点后数字的个数;介于 0 到 20 (包括)之间,实现环境可能支持更大范围。如果忽略该参数,则默认为 0。

返回一个数值的字符串表现形式,不使用指数记数法,而是在小数点后有 digits 位数字。该数值在必要时进行四舍五入,另外在必要时会用 0 来填充小数部分,以便小数部分有指定的位数。 如果数值大于 1e+21,该方法会简单调用 Number.prototype.toString()并返回一个指数记数法格式的字符串。

特别注意:toFixed() 返回一个数值的字符串表现形式。

具体可以查看 MDN中的说明,那么我们可以这样解决精度问题:

parseFloat((数学表达式).toFixed(digits)); // toFixed() 精度参数须在 0 与20 之间
// 运行
parseFloat((1.0 - 0.9).toFixed(10)) // 结果为 0.1
parseFloat((0.3 / 0.1).toFixed(10)) // 结果为 3
parseFloat((9.7 * 100).toFixed(10)) // 结果为 970
parseFloat((2.22 + 0.1).toFixed(10)) // 结果为 2.32

在老版本的IE浏览器(IE 6,7,8)中,toFixed()方法返回值不一定准确。所以这个方法以前很少用。以至于网上搜索出来的结果大都是下面这些方法。

还有一些其他的解决方案,简单的说需要将浮点数转换字符串,分隔成为整数部分和小数部分,小数部分再转换为整数,计算结果后,再转换为浮点数。这过程有点复杂…,网上找一下:

加法函数

/**
** 加法函数,用来得到精确的加法结果
** 说明:javascript的加法结果会有误差,在两个浮点数相加的时候会比较明显。这个函数返回较为精确的加法结果。
** 调用:accAdd(arg1,arg2)
** 返回值:arg1加上arg2的精确结果
**/
function accAdd(arg1, arg2) {
var r1, r2, m, c;
try {
r1 = arg1.toString().split(".")[1].length;
}
catch (e) {
r1 = 0;
}
try {
r2 = arg2.toString().split(".")[1].length;
}
catch (e) {
r2 = 0;
}
c = Math.abs(r1 - r2);
m = Math.pow(10, Math.max(r1, r2));
if (c > 0) {
var cm = Math.pow(10, c);
if (r1 > r2) {
arg1 = Number(arg1.toString().replace(".", ""));
arg2 = Number(arg2.toString().replace(".", "")) * cm;
} else {
arg1 = Number(arg1.toString().replace(".", "")) * cm;
arg2 = Number(arg2.toString().replace(".", ""));
}
} else {
arg1 = Number(arg1.toString().replace(".", ""));
arg2 = Number(arg2.toString().replace(".", ""));
}
return (arg1 + arg2) / m;
} //给Number类型增加一个add方法,调用起来更加方便。
Number.prototype.add = function (arg) {
return accAdd(arg, this);
};

减法函数

/**
** 减法函数,用来得到精确的减法结果
** 说明:javascript的减法结果会有误差,在两个浮点数相减的时候会比较明显。这个函数返回较为精确的减法结果。
** 调用:accSub(arg1,arg2)
** 返回值:arg1加上arg2的精确结果
**/
function accSub(arg1, arg2) {
var r1, r2, m, n;
try {
r1 = arg1.toString().split(".")[1].length;
}
catch (e) {
r1 = 0;
}
try {
r2 = arg2.toString().split(".")[1].length;
}
catch (e) {
r2 = 0;
}
m = Math.pow(10, Math.max(r1, r2)); //last modify by deeka //动态控制精度长度
n = (r1 >= r2) ? r1 : r2;
return ((arg1 * m - arg2 * m) / m).toFixed(n);
} // 给Number类型增加一个mul方法,调用起来更加方便。
Number.prototype.sub = function (arg) {
return accMul(arg, this);
};

乘法函数

/**
** 乘法函数,用来得到精确的乘法结果
** 说明:javascript的乘法结果会有误差,在两个浮点数相乘的时候会比较明显。这个函数返回较为精确的乘法结果。
** 调用:accMul(arg1,arg2)
** 返回值:arg1乘以 arg2的精确结果
**/
function accMul(arg1, arg2) {
var m = 0, s1 = arg1.toString(), s2 = arg2.toString();
try {
m += s1.split(".")[1].length;
}
catch (e) {
}
try {
m += s2.split(".")[1].length;
}
catch (e) {
}
return Number(s1.replace(".", "")) * Number(s2.replace(".", "")) / Math.pow(10, m);
} // 给Number类型增加一个mul方法,调用起来更加方便。
Number.prototype.mul = function (arg) {
return accMul(arg, this);
};

除法函数

/**
** 除法函数,用来得到精确的除法结果
** 说明:javascript的除法结果会有误差,在两个浮点数相除的时候会比较明显。这个函数返回较为精确的除法结果。
** 调用:accDiv(arg1,arg2)
** 返回值:arg1除以arg2的精确结果
**/
function accDiv(arg1, arg2) {
var t1 = 0, t2 = 0, r1, r2;
try {
t1 = arg1.toString().split(".")[1].length;
}
catch (e) {
}
try {
t2 = arg2.toString().split(".")[1].length;
}
catch (e) {
}
with (Math) {
r1 = Number(arg1.toString().replace(".", ""));
r2 = Number(arg2.toString().replace(".", ""));
return (r1 / r2) * pow(10, t2 - t1);
}
} //给Number类型增加一个div方法,调用起来更加方便。
Number.prototype.div = function (arg) {
return accDiv(this, arg);
};
 

浮点数运算的精度问题:以js语言为例的更多相关文章

  1. JS007. 深入探讨带浮点数运算丢失精度问题(二进制的浮点数存储方式)

    复现与概述 当JS在进行浮点数运算时可能产生丢失精度的情况: 从肉眼可见的程度上观察,发生精度丢失的浮点数是没有规律的,但该浮点数丢失精度的问题会100%复现.经查阅,这个问题要追溯至浮点数的二进制存 ...

  2. JS 浮点数运算丢失精度解决方案

    除法 function accDiv(arg1,arg2){ var t1=0,t2=0,r1,r2; try{t1=arg1.toString().split(".")[1].l ...

  3. JavaScript 浮点数运算的精度问题

    问题描述 在 JavaScript 中整数和浮点数都属于 Number 数据类型,所有数字都是以 64 位浮点数形式储存,即便整数也是如此. 所以我们在打印 1.00 这样的浮点数的结果是 1 而非 ...

  4. JavaScript浮点数运算的精度问题

    之前在做浮点数计算时,偶然发现计算结果有误差,度娘了解了下,补充整理了下. 误差是什么样子的呢?举例 console.log(0.1+0.2); // 0.30000000000000004 事实上在 ...

  5. Number浮点数运算详解

    文章来自我的 github 博客,包括技术输出和学习笔记,欢迎star. 一道题 0.1 + 0.2 = ? 在浏览器中测试下计算结果,得到的结果是 0.30000000000000004,并不是理想 ...

  6. js,java,浮点数运算错误及应对方法

    js,java浮点数运算错误及应对方法 一,浮点数为什么会有运算错误 IEEE 754 标准规定了计算机程序设计环境中的二进制和十进制的浮点数自述的交换.算术格式以及方法. 现有存储介质都是2进制.2 ...

  7. JavaScript 浮点数运算 精度问题

    JavaScript小数在做四则运算时,精度会丢失,这会在项目中引起诸多不便,先请看下面脚本. //加减 <script type="text/javascript" lan ...

  8. JS浮点数运算Bug

    JS浮点数运算Bug的解决办法(转) 37.5*5.5=206.08 (JS算出来是这样的一个结果,我四舍五入取两位小数) 我先怀疑是四舍五入的问题,就直接用JS算了一个结果为:206.0849999 ...

  9. js浮点数运算的坑,多少同学有碰到过?

    javascript中的数字都是双精度的浮点数. JavaScript中的整数并不是一个独立的数据类型,而是浮点数的一个子集. 浮点数的坑我们看下面的例子 在浏览器的console 控制台上我们分别进 ...

随机推荐

  1. java中内存分配

    java程序运行时内存分配详解  一. 基本概念 每运行一个java程序会产生一个java进程,每个java进程可能包含一个或者多个线程,每一个Java进程对应唯一一个JVM实例,每一个JVM实例唯一 ...

  2. adoop(四)HDFS集群详解

    阅读目录(Content) 一.HDFS概述 1.1.HDFS概述 1.2.HDFS的概念和特性 1.3.HDFS的局限性 1.4.HDFS保证可靠性的措施 二.HDFS基本概念 2.1.HDFS主从 ...

  3. golang数据类型与转换

    一.数值型int(默认值 0) int 整数 32位系统占4个字节(-2^31~2^31-1).64位系统占8个字节(-2^63~2^63-1)uint 32位系统占4个字节(0~2^32-1).64 ...

  4. python之常用模块一(time、random、os、sys)

    摘要:时间模块time .随机模块random .os模块.sys模块 一.时间模块 三种格式 时间戳时间:浮点数 单位为秒 时间戳起始时间: 1970.1.1 0:0:0 英国伦敦时间 1970.1 ...

  5. SpringBoot之普通类获取Spring容器中的bean

    package com.geostar.geostack.git_branch_manager.common; import org.springframework.beans.BeansExcept ...

  6. rest framework 认证 权限 频率

    认证组件 发生位置 APIview 类种的 dispatch 方法执行到 initial 方法 进行 认证组件认证 源码位置 rest_framework.authentication  源码内部需要 ...

  7. vuetify | vue | 文件上传组件 | file | upload | form input[type="file"]

    今天无聊地写vuecli3听歌的时候,遇到了上传文件到Django的自我需求,然后就到vuetify的表单组件里找upload btn,发现居然没有!!! 顿时惊了个呆,要知道之前用element做操 ...

  8. 第三十七节、人脸检测MTCNN和人脸识别Facenet(附源码)

    在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐 ...

  9. <一>企业级开源仓库nexus实战应用–nexus的安装

    1,Nexus 介绍. Nexus是什么? Nexus 是一个强大的maven仓库管理器,它极大地简化了本地内部仓库的维护和外部仓库的访问. 不仅如此,他还可以用来创建yum.pypi.npm.doc ...

  10. 如何解决Angular网页内嵌推特时间线无法正常显示

    我最近解决了一个折磨了我好久但是解决方法却只是添加两三行代码的问题.我没有在网上找到合适的解决方案,最后是我根据官方网站和很多的帖子里的部分代码得到的启发,尝试了很久之后得到的解决方法.因为过程实在是 ...