Solution

考虑从\((x_1,y_1)\)走到\((x_2,y_2)\)满足只改变一次方向,则容易求出先向南走当且仅当

\[\frac{a_{x_1} - a_{x_2}}{x_1 - x_2}<\frac{b_{x_1} - b_{x_2}}{x_1 - x_2}
\]

我们思考,没有用的行或列满足什么条件。

以行为例,考虑有三行:\(x=i, x=j,x=k\),两列:\(y=l,y=r\),从\((i,l)\)走到\((k,r)\)我们的条件是在\(x=j\)上走过一定更劣,故而能将\(x=j\)删去

假设我们从经\(x=j\)走到了,那么可以得到

\[\frac{a_{i} - a_{j}}{i - j}<\frac{b_{l} - b_{r}}{l - r}
\]

到这里有一个比较容易想到的构造:若

\[\frac{a_{i} - a_{j}}{i - j}>\frac{a_{j} - a_{k}}{j - k}
\]

则不会从\((j,l)\)经过\(x=j\)走到\((k,r)\)

所以我们要对\((i,a_i)\)维护出一个斜率单调递增的凸包,那么在凸包上的行就是可能有用的

对于列,同理

然后呢?如何求答案?

需要注意的是,在求答案的时候不能一次跳一个矩形的两条边,因为我们上面的条件是在只改变一次方向的情况下的,正确的方式是在\((x,y)\)的位置通过比较开头的式子,来决定先往哪个方向走,但是只走一段,因为通过去掉重复的部分可以发现走出的每一步都需要依赖于开头的式子,而走出一步后,状态发生改变,所以要重新找出最优决策。可以通过维护两个指针实现,复杂度\(O(H+W)\)

Code

#include <cstdio>
#include <iostream>
#define LL long long
using namespace std;
inline LL read() {
LL res = 0, f = 0; char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) res = (res << 1) + (res << 3) + (ch ^ 48);
if(f) res = ~res + 1;
return res;
}
const int N = 1000100;
LL h, w, a[N], b[N], ans, stk[N], top, p[N], q[N];
inline double slope1(LL x, LL y) {return 1.0 * (a[x] - a[y]) / (x - y);}
inline double slope2(LL x, LL y) {return 1.0 * (b[x] - b[y]) / (x - y);}
inline LL calc(LL x, LL y, LL nx, LL ny) {
if(x == nx) return a[x] * (ny - y);
else return b[y] * (nx - x);
}
int main() {
h = read(), w = read();
for(int i = 1; i <= h; ++i) a[i] = read();
for(int i = 1; i <= w; ++i) b[i] = read();
for(int i = 1; i <= h; ++i) {
while(top > 1 && slope1(i, stk[top - 1]) < slope1(stk[top], stk[top - 1])) --top;
stk[++top] = i;
}
for(int i = 1; i <= top; ++i) p[i] = stk[i];
top = 0;
for(int i = 1; i <= w; ++i) {
while(top > 1 && slope2(i, stk[top - 1]) < slope2(stk[top], stk[top - 1])) --top;
stk[++top] = i;
}
for(int i = 1; i <= top; ++i) q[i] = stk[i];
for(int p1 = 1, p2 = 1, x = 1, y = 1; !(x == h && y == w); ) {
if(x == h) ans += calc(x, y, x, q[++p2]), y = q[p2];
else if(y == w) ans += calc(x, y, p[++p1], y), x = p[p1];
else {
if(slope1(p[p1], p[p1 + 1]) < slope2(q[p2], q[p2 + 1])) ans += calc(x, y, p[++p1], y), x = p[p1];
else ans += calc(x, y, x, q[++p2]), y = q[p2];
}
}
printf("%lld\n",ans);
}

「JOISC 2022 Day1」京都观光 题解的更多相关文章

  1. 【LOJ】#3032. 「JOISC 2019 Day1」馕

    LOJ#3032. 「JOISC 2019 Day1」馕 处理出每个人把馕切成N段,每一段快乐度相同,我们选择第一个排在最前的人分给他的第一段,然后再在未选取的的人中选一个第二个排在最前的切一下,并把 ...

  2. 【LOJ】#3031. 「JOISC 2019 Day1」聚会

    LOJ#3031. 「JOISC 2019 Day1」聚会 听说随机可过? 我想了很久想了一个不会被卡的做法,建出前\(u - 1\)个点的虚树,然后找第\(u\)个点的插入位置,就是每次找一条最长链 ...

  3. 【LOJ】#3030. 「JOISC 2019 Day1」考试

    LOJ#3030. 「JOISC 2019 Day1」考试 看起来求一个奇怪图形(两条和坐标轴平行的线被切掉了一个角)内包括的点个数 too naive! 首先熟练的转化求不被这个图形包含的个数 -- ...

  4. 「JOISC 2014 Day1」巴士走读

    「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...

  5. 「JOISC 2014 Day1」 历史研究

    「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...

  6. 「题解」「JOISC 2014 Day1」历史研究

    目录 题目 考场思考 思路分析及标程 题目 点这里 考场思考 大概是标准的莫队吧,离散之后来一个线段树加莫队就可以了. 时间复杂度 \(\mathcal O(n\sqrt n\log n)\) . 然 ...

  7. 「JOISC 2014 Day1」历史研究 --- 回滚莫队

    题目又臭又长,但其实题意很简单. 给出一个长度为\(N\)的序列与\(Q\)个询问,每个询问都对应原序列中的一个区间.对于每个查询的区间,设数\(X_{i}\)在此区间出现的次数为\(Sum_{X_{ ...

  8. 「JOISC 2020 Day1」汉堡肉

    我终于学会打开机房的LOJ了! description LOJ3272 有\(n(n<=2*10^5)\)个矩形,让你找\(k(k<=4)\)个点可以覆盖所有矩形(点可重复),输出一种方案 ...

  9. 「JOISC 2019 Day3」穿越时空 Bitaro

    「JOISC 2019 Day3」穿越时空 Bitaro 题解: ​ 不会处理时间流逝,我去看了一眼题解的图,最重要的转换就是把(X,Y)改成(X,Y-X)这样就不会斜着走了. ​ 问题变成二维平面上 ...

随机推荐

  1. 题解【洛谷 P1246 编码】

    题目 编码工作常被运用于密文或压缩传输.这里我们用一种最简单的编码方式进行编码:把一些有规律的单词编成数宇. 字母表中共有 \(26\) 个字母 \(\{\tt a,b,\cdots,z\}\),这些 ...

  2. java中String使用+

    String str1 = "hello"; String str2 = "hel" + new String("lo"); String ...

  3. session,cookie,jwt的简单使用

    cookie的使用 https://blog.csdn.net/qq_58168493/article/details/122492358 session的使用 https://blog.csdn.n ...

  4. 理解C++函数指针和指针函数(一)

    函数指针 实际上使用最多的还是指针函数,但我们还是可以先看看函数指针 奇怪的是,大家搜索指针函数,或者Pointer function,出来的还是函数指针的链接. OK,废话不多说,先给大家举个例子. ...

  5. kafka详解(一)--kafka是什么及怎么用

    kafka是什么 在回答这个问题之前,我们需要先了解另一个东西--event streaming. 什么是event streaming 我觉得,event streaming 是一个动态的概念,它描 ...

  6. 阿里druid-spring-boot-starter 配置,个人整理以及遇到的问题(防止之后找不到)

    ​ 简介,什么是Druid Druid是阿里巴巴开源平台上的一个项目,整个项目由数据库连接池.插件框架和SQL解析器组成.该项目主要是为了扩展JDBC的一些限制,可以让程序员实现一些特殊的需求,比如向 ...

  7. Javascript实现base64的加密解密方法

    1 function Base64() { 2 // private property 3 _keyStr = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkl ...

  8. KingbaseES 中可以通过构造一个聚集函数来实现mysql的any_value功能。

    示例 创建函数 create function coalesce_("anyelement","anyelement") returns "anyel ...

  9. KingbaseES V8R6C5集群部署启动securecmdd服务配置案例

    案例说明: 对于KingbaseES V8R6C5版本在部集群时,需要建立kingbase.root用户在节点间的ssh互信,如果在生产环境禁用root用户ssh登录,则通过ssh部署会失败:在图形化 ...

  10. Linux_tail总结

    tail 命令用法 功能从尾部显示文件若干行 语法: tail [ +/- num ][参数] 文件名 使用tail命令的-f选项可以方便的查阅正在改变的日志文件,tail -f filename会把 ...