[2022-2-18] OICLASS提高组模拟赛2 A·整数分解为2的幂
问题 A: 整数分解为 2 的幂
题目描述
任何正整数都能分解成 2 的幂,给定整数 N,求 N 的此类划分方法的数量!由于方案数量较大,输出 Mod 1000000007 的结果。
比如 N = 7 时,共有 6 种划分方法。
7=1+1+1+1+1+1+1
=1+1+1+1+1+2
=1+1+1+2+2
=1+2+2+2
=1+1+1+4
=1+2+4
输入
输入一个数 N(1≤N≤10^6)
输出
输出划分方法的数量 Mod 1000000007
样例输入
7
样例输出
6
先放结论:

为什么是这样呢?
首先来看 \(N\) 为奇数的情况:
举个例子,6的拆分方法为:
1 1 1 1 1 1
1 1 1 1 2
1 1 2 2
1 1 4
2 2 2
2 4
共6种分解方法。
7的拆分方法呢?
1 1 1 1 1 1 1
1 1 1 1 1 2
1 1 1 2 2
1 1 1 4
1 2 2 2
1 2 4
我们发现,7的拆分在6的拆分的基础上最大的区别即在每组拆分的开头都加上了一个 \(1\) 。
这个多出来的 \(1\) 理论上是可以和其它的 \(1\) 合并的,然并卵,我们发现,当:
1 1 1 1 1 1 1
合并一次后得到
1 1 1 1 1 2
时,本质上与原来的
1 1 1 1 1 2
没有任何区别。那么,我们就得到了第一条结论:
\]
我们再来看偶数
举个例子,还是6的分解方法:
1 1 1 1 1 1
1 1 1 1 2
1 1 2 2
1 1 4
2 2 2
2 4
我们把它分为有 \(1\) 的拆分部分和没有 \(1\) 的拆分部分
先看有 \(1\) 的拆分部分:
1 1 1 1 1 1
1 1 1 1 2
1 1 2 2
1 1 4
我们发现,把每一种拆分的第一个 \(1\) 盖住之后,我们会发现这与5的拆分方式没有本质上的区别,和奇数一样,我们得到了第一个部分:
\]
再看没有1的部分,
2 2 2
2 4
因为拆分的全都是2的次幂,当1即 \(2^0\) 没有后,我们把拆分的每一项的每一个数除以2得:
1 1 1
1 2
我们发现,这本质上就是3的拆分,那么,我们就得到了第二个结论:
\]
把两个部分加起来,就得到了偶数的个数公式:
\]
那么看下代码:
#include<iostream>
using namespace std;
long long a[1000010];
int main(){
long long n;
a[1]=1;
for(long long i=2;i<=1000005;i++){
if(i%2==1){
a[i]=a[i-1]%1000000007;
}
else{
a[i]=(a[i-1]+a[i/2])%1000000007;
}
}
cin>>n;
cout<<a[n];
return 0;
}
The End.
[发布编辑时间]2022/2/18 20:52
[2022-2-18] OICLASS提高组模拟赛2 A·整数分解为2的幂的更多相关文章
- ZROI提高组模拟赛05总结
ZROI提高组模拟赛05总结 感觉是目前为止最简单的模拟赛了吧 但是依旧不尽人意... T1 有一半的人在30min前就A掉了 而我花了1h11min 就是一个简单的背包,我硬是转化了模型想了好久,生 ...
- NOIP2017提高组 模拟赛15(总结)
NOIP2017提高组 模拟赛15(总结) 第一题 讨厌整除的小明 [题目描述] 小明作为一个数学迷,总会出于数字的一些性质喜欢上某个数字,然而当他喜欢数字k的时候,却十分讨厌那些能够整除k而比k小的 ...
- NOIP2017提高组 模拟赛13(总结)
NOIP2017提高组 模拟赛13(总结) 第一题 函数 [题目描述] [输入格式] 三个整数. 1≤t<10^9+7,2≤l≤r≤5*10^6 [输出格式] 一个整数. [输出样例] 2 2 ...
- NOIP2017提高组模拟赛 10 (总结)
NOIP2017提高组模拟赛 10 (总结) 第一题 机密信息 FJ有个很奇怪的习惯,他把他所有的机密信息都存放在一个叫机密盘的磁盘分区里,然而这个机密盘中却没有一个文件,那他是怎么存放信息呢?聪明的 ...
- NOIP2017提高组模拟赛 8(总结)
NOIP2017提高组模拟赛 8(总结) 第一题 路径 在二维坐标平面里有N个整数点,Bessie要访问这N个点.刚开始Bessie在点(0,0)处. 每一步,Bessie可以走到上.下.左.右四个点 ...
- NOIP2017提高组模拟赛 9 (总结)
NOIP2017提高组模拟赛 9 (总结) 第一题 星星 天空中有N(1≤N≤400)颗星,每颗星有一个唯一的坐标(x,y),(1≤x,y ≤N).请计算可以覆盖至少K(1≤K≤N)颗星的矩形的最小面 ...
- NOIP2017提高组模拟赛 7(总结)
NOIP2017提高组模拟赛 7(总结) 第一题 斯诺克 考虑这样一个斯诺克球台,它只有四个袋口,分别在四个角上(如下图所示).我们把所有桌子边界上的整数点作为击球点(除了4个袋口),在每个击球点我们 ...
- NOIP2017提高组模拟赛5 (总结)
NOIP2017提高组模拟赛5 (总结) 第一题 最远 奶牛们想建立一个新的城市.它们想建立一条长度为N (1 <= N <= 1,000,000)的 主线大街,然后建立K条 (2 < ...
- NOIP2017提高组模拟赛4 (总结)
NOIP2017提高组模拟赛4 (总结) 第一题 约数 设K是一个正整数,设X是K的约数,且X不等于1也不等于K. 加了X后,K的值就变大了,你可以重复上面的步骤.例如K= 4,我们可以用上面的规则产 ...
随机推荐
- python 单元测试 执行测试
1.在unittest框架中执行测试用例: if __name__ == "__main__": unittest.main() # unittest框架会把以test_开头的实例 ...
- Sweetalert模态对话框与Swiper轮播插件、Bootstrap样式组件、AdminLTE后台管理模板地址
Sweetalert纯JS模态对话框插件地址:http://mishengqiang.com/sweetalert/ AdminLTE后台管理模板系统地址(基于Bootstrap):https://a ...
- X000101
P3879 [TJOI2010]阅读理解 考虑用 Trie 解决 #include<stdio.h> #include<bitset> #include<string.h ...
- Git .gitignore 不起作用的解决办法
解决方法的原理:.gitignore只能忽略那些原来没有被track的文件,如果某些文件已经被纳入了版本管理中,则修改.gitignore是无效的. 解决方案:git rm -r --cached . ...
- java中构造函数和一般函数的区别
构造方法 特点: 1.方法名称和类名相同 2.不用定义返回值类型 3.不可以写return语句 作用: 给对象初始化 构造方法的细节: 当一个类中没有定义构造函数时,系统会默认添加一个无参的构造方法. ...
- Docker容器启动失败 Failed to start Docker Application Container Engine
1.在k8s mster节点执行 1.kubectl get nodes 发现node节点没起来 [root@guanbin-k8s-master ~]# kubectl get nodes NAME ...
- Innodb之索引与算法
目录 一.概述 二.数据结构与算法 1.二分查找 2.二叉查找树和平衡二叉树 1)二叉查找树 2)平衡二叉树 三.B+树 1.B+树完整定义 2.关于 M 和 L的选定案例 四.B+树索引 1.聚集索 ...
- 利用Tensorboard可视化模型、数据和训练过程
在60分钟闪电战中,我们像你展示了如何加载数据,通过为我们定义的nn.Module的子类的model提供数据,在训练集上训练模型,在测试集上测试模型.为了了解发生了什么,我们在模型训练时打印了一些统计 ...
- 组合&反射&面向对象内置函数
内容概要 组合 反射 面向对象的内置函数 异常 内容详细 一.组合 组合:在对象中定义一个属性,属性的值是另一个对象 除了继承父类的方法,这是获取另一个类中属性的另一种方式 如果想给学生对象添加课程属 ...
- leetcode算法1.两数之和
哈喽!大家好,我是[学无止境小奇],一位热爱分享各种技术的博主! [学无止境小奇]的创作宗旨:每一条命令都亲自执行过,每一行代码都实际运行过,每一种方法都真实实践过,每一篇文章都良心制作过. [学无止 ...