太慢了!太慢了!我的替身 【The World】 是最强的替身!

\(O(n^{\frac 2 3})\) 的解法!不清楚用 sbt 能不能更快一些,可能会吧。灵感来源于BZOJ4176,同时也可看到我也是 BZOJ4176 的最优解。理所当然地,我也是 P6788 的最优解

首先看着这个柿子:

\[\prod_{i=1}^n\prod_{d|i}\frac {d^{\sigma_0(d)}} {\prod_{k|d} (k+1)^2}
\]

考虑将 \(d^{\sigma_0(d)}\) 展开:

\[\prod_{i=1}^n\prod_{d|i}\frac {\prod_{k|d}d} {\prod_{k|d}(k+1)^2}
\]

设 \(kx=d\):

\[\prod_{i=1}^n\prod_{d|i}\prod_{k|d}\frac {kx} {(k+1)^2}
\]

容易发现 \(\prod_{k|d}k \times (\frac d k)=\prod_{k|d} k \times \prod_{k|d}k=(\prod_{k|d}k)^2\)

所以:

\[(\prod_{i=1}^n\prod_{d|i}\prod_{k|d}\frac k {k+1})^2
\]
\[(\prod_{k=1}^n(\frac k {k+1})^{\prod_{i=1}^{\lfloor \frac n k \rfloor}\lfloor \frac n {ki} \rfloor})^2
\]

大多数同学是使用整除分块暴力计算 \(\sum_{i=1}^n \lfloor \frac n i \rfloor\) 而达到 \(O(n^{\frac 3 4})\) 的复杂度,但是这玩意儿其实有性质。

\[\sum_{i=1}^n\sigma_0(i) = \sum_{i=1}^n \sum_{d|i}1 = \sum_{d=1}^n \lfloor \frac n d \rfloor
\]

所以这玩意儿相当于求 \(\sigma_0\) 的块筛。求块筛的常见做法是使用杜教筛或挖掘性质,这里考虑杜教筛。

因为 \(\sigma_0 = 1 * 1\),所以考虑配对一个 \(\mu\) 上去,使其变为 \(1\)。

只需要同时筛 \(mu\) 和 \(\sigma_0\) 即可。

没有必要对 \(n^{\frac 2 3}\) 以下的 \(\sigma_0\) 使用整除分块计算前缀和,因为在筛 \(\mu\) 的同时把 \(\sigma_0\) 也筛了,这样反而会增加常数。同样也没有必要使用 sbt。

upd:我麻烦了,不需要使用杜教筛,小部分线性筛大部分整除分块即可。其他的好像都没这个快。

#include<cstdio>
#include<cmath>
typedef unsigned ui;
typedef unsigned long long ull;
const int M=2e6;
ui n,mod,lim,top,pri[149000],idx[M+5],d[M+5];
double inv[200005];
inline ui Pow(ui a,ui b=mod-2){
ui ans(1);
for(;b;b>>=1,a=1ull*a*a%mod)if(b&1)ans=1ull*ans*a%mod;
return ans;
}
inline void sieve(const ui&M){
register ui i,j,x;d[1]=1;
for(i=2;i<=M;++i){
if(!d[i])pri[++top]=i,d[i]=2,idx[i]=1;
for(j=1;j<=top&&(x=i*pri[j])<=M;++j){
if(!(i%pri[j])){
idx[x]=idx[i]+1;d[x]=((ui)(d[i]*inv[idx[x]]))*(idx[x]+1);break;
}
idx[x]=1;d[x]=d[i]*2;
}
}
for(i=1;i<=M;++i)d[i]+=d[i-1];
}
inline ui GetSd(const ui&n){
if(n<=lim)return d[n];
ull ans(0);ui i;
for(i=1;i*i<=n;++i)ans+=n*inv[i];
return ((ans<<1)-(i-1)*(i-1))%(mod-1);
}
signed main(){
register ui i,x,L,R,ans=1;
scanf("%u%u",&n,&mod);
for(i=1;(i-1)*(i-1)<=n;++i)inv[i]=1./i+1e-15;sieve(lim=ceil(pow(n,2./3)));
for(L=1;L*L<=n;++L)ans=1ull*ans*Pow(1ull*L*Pow(L+1)%mod,GetSd(n*inv[L]))%mod;
for(x=n*inv[L];L<=n;L=R+1){
if(x*L>n)--x;R=n*inv[x];
ans=1ull*ans*Pow(1ull*L*Pow(R+1)%mod,GetSd(x))%mod;
}
printf("%u",1ull*ans*ans%mod);
}

LGP6788题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. Posix 信号

    转载请注明来源:https://www.cnblogs.com/hookjc/ 函数sem_open创建一个新的有名信号灯或打开一个已存在的有名信号灯.有名信号灯总是既可用于线程间的同步,又可以用于进 ...

  2. js 数组map用法 Array.prototype.map()

    map 这里的map不是"地图"的意思,而是指"映射".[].map(); 基本用法跟forEach方法类似: array.map(callback,[ thi ...

  3. Keepalived配置与使用(1)

    介绍 Keepalived是一个基于VRRP协议来实现的WEB服务高可用方案,可以利用其来避免单点故障.一个WEB服务至少会有2台服务器运行Keepalived,一台为主服务器(MASTER),一台为 ...

  4. 网管必须必须知道的知识!ARP攻击与欺骗的原理!

    ARP攻击与ARP欺骗原理及应用 1.ARP概述以及攻击原理 2.ARP欺骗原理 3.ARP故障处理 1.什么是ARP协议?将一个已知的IP地址解析成MAC地址.无论是ARP攻击还是ARP欺骗,它们都 ...

  5. BumbleBee: 如丝般顺滑构建、交付和运行 eBPF 程序

    本文地址:https://www.ebpf.top/post/bumblebee 1. 前言 不久前,Solo.io 公司在官网博客宣布了开源了一个名称为 BumbleBee 的新项目.该项目专注于简 ...

  6. 9、Selenium grid2

    P228--Selenium Grid2 P233--Selenium Grid 工作原理 P236--Remote 应用 P246--WebDriver 驱动 driver = webdriver. ...

  7. k8s集群中部署prometheus server

    1.概述 本文档主要介绍如何在k8s集群中部署prometheus server用来作为监控的数据采集服务器,这样做可以很方便的对k8s集群中的指标.pod的.节点的指标进行采集和监控. 2.下载镜像 ...

  8. Solution -「Gym 102979E」Expected Distance

    \(\mathcal{Description}\)   Link.   用给定的 \(\{a_{n-1}\},\{c_n\}\) 生成一棵含有 \(n\) 个点的树,其中 \(u\) 连向 \([1, ...

  9. JNDI漏洞利用探索

    最近学习了师傅寻找的一些JNDI漏洞的利用链受益匪浅,自己也尝试关于JNDI漏洞利用做一些挖掘,目前JNDI在利用过程我想到了两个问题. 测试每一个JNDI Bypass 利用链都需要手动更改URL很 ...

  10. 天啦,从Mongo到ClickHouse我到底经历了什么?

    前言: 在实现前端监控系统的最初,使用了 Mongo 作为日志数据存储库.文档型存储,在日志字段扩展和收缩上都能非常方便.天生的 JSON 格式和 NodeJs 配合也非常贴合.就这样度过了几个月的蜜 ...