【算法】基数排序(Radix Sort)(十)
基数排序(Radix Sort)
基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。
1.算法描述
- 取得数组中的最大数,并取得位数;
- arr为原始数组,从最低位开始取每个位组成radix数组;
- 对radix进行计数排序(利用计数排序适用于小范围数的特点)。
2.动图演示

3.代码实现
//javascript实现
//LSD Radix Sort
var counter = [];
function radixSort(arr, maxDigit) {
var mod = 10;
var dev = 1;
for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
for(var j = 0; j < arr.length; j++) {
var bucket = parseInt((arr[j] % mod) / dev);
if(counter[bucket]==null) {
counter[bucket] = [];
}
counter[bucket].push(arr[j]);
}
var pos = 0;
for(var j = 0; j < counter.length; j++) {
var value = null;
if(counter[j]!=null) {
while ((value = counter[j].shift()) != null) {
arr[pos++] = value;
}
}
}
}
return arr;
}
//java实现
/**
* 基数排序
* 考虑负数的情况还可以参考: https://code.i-harness.com/zh-CN/q/e98fa9
*/
public class RadixSort implements IArraySort {
@Override
public int[] sort(int[] sourceArray) throws Exception {
// 对 arr 进行拷贝,不改变参数内容
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
int maxDigit = getMaxDigit(arr);
return radixSort(arr, maxDigit);
}
/**
* 获取最高位数
*/
private int getMaxDigit(int[] arr) {
int maxValue = getMaxValue(arr);
return getNumLenght(maxValue);
}
private int getMaxValue(int[] arr) {
int maxValue = arr[0];
for (int value : arr) {
if (maxValue < value) {
maxValue = value;
}
}
return maxValue;
}
protected int getNumLenght(long num) {
if (num == 0) {
return 1;
}
int lenght = 0;
for (long temp = num; temp != 0; temp /= 10) {
lenght++;
}
return lenght;
}
private int[] radixSort(int[] arr, int maxDigit) {
int mod = 10;
int dev = 1;
for (int i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
// 考虑负数的情况,这里扩展一倍队列数,其中 [0-9]对应负数,[10-19]对应正数 (bucket + 10)
int[][] counter = new int[mod * 2][0];
for (int j = 0; j < arr.length; j++) {
int bucket = ((arr[j] % mod) / dev) + mod;
counter[bucket] = arrayAppend(counter[bucket], arr[j]);
}
int pos = 0;
for (int[] bucket : counter) {
for (int value : bucket) {
arr[pos++] = value;
}
}
}
return arr;
}
/**
* 自动扩容,并保存数据
*
* @param arr
* @param value
*/
private int[] arrayAppend(int[] arr, int value) {
arr = Arrays.copyOf(arr, arr.length + 1);
arr[arr.length - 1] = value;
return arr;
}
}
4.算法分析
基数排序基于分别排序,分别收集,所以是稳定的。但基数排序的性能比桶排序要略差,每一次关键字的桶分配都需要O(n)的时间复杂度,而且分配之后得到新的关键字序列又需要O(n)的时间复杂度。假如待排数据可以分为d个关键字,则基数排序的时间复杂度将是O(d*2n) ,当然d要远远小于n,因此基本上还是线性级别的。
基数排序的空间复杂度为O(n+k),其中k为桶的数量。一般来说n>>k,因此额外空间需要大概n个左右。
【算法】基数排序(Radix Sort)(十)的更多相关文章
- 经典排序算法 - 基数排序Radix sort
经典排序算法 - 基数排序Radix sort 原理类似桶排序,这里总是须要10个桶,多次使用 首先以个位数的值进行装桶,即个位数为1则放入1号桶,为9则放入9号桶,临时忽视十位数 比如 待排序数组[ ...
- 学习算法-基数排序(radix sort)卡片分类(card sort) C++数组实现
基数排序称为卡片分类,这是一个比较早的时间越多,排名方法. 现代计算机出现之前,它已被用于排序老式打孔卡. 说下基数排序的思想.前面我有写一个桶式排序,基数排序的思想是桶式排序的推广. 桶式排序:ht ...
- [转] 经典排序算法 - 基数排序Radix sort
原理类似桶排序,这里总是需要10个桶,多次使用 首先以个位数的值进行装桶,即个位数为1则放入1号桶,为9则放入9号桶,暂时忽视十位数 例如 待排序数组[62,14,59,88,16]简单点五个数字 分 ...
- 基数排序(radix sort)
#include<iostream> #include<ctime> #include <stdio.h> #include<cstring> #inc ...
- 小小c#算法题 - 9 - 基数排序 (Radix Sort)
基数排序和前几篇博客中写到的排序方法完全不同.前面几种排序方法主要是通过关键字间的比较和移动记录这两种操作来实现排序的,而实现基数排序不需要进行记录项间的比较.而是把关键字按一定规则分布在不同的区域, ...
- 桶排序/基数排序(Radix Sort)
说基数排序之前,我们先说桶排序: 基本思想:是将阵列分到有限数量的桶子里.每个桶子再个别排序(有可能再使用别的排序算法或是以递回方式继续使用桶排序进行排序).桶排序是鸽巢排序的一种归纳结果.当要被排序 ...
- 排序算法七:基数排序(Radix sort)
上一篇提到了计数排序,它在输入序列元素的取值范围较小时,表现不俗.但是,现实生活中不总是满足这个条件,比如最大整形数据可以达到231-1,这样就存在2个问题: 1)因为m的值很大,不再满足m=O(n) ...
- [MIT6.006] 7. Counting Sort, Radix Sort, Lower Bounds for Sorting 基数排序,基数排序,排序下界
在前6节课讲的排序方法(冒泡排序,归并排序,选择排序,插入排序,快速排序,堆排序,二分搜索树排序和AVL排序)都是属于对比模型(Comparison Model).对比模型的特点如下: 所有输入ite ...
- 基数排序(Radix Sort)
基数排序(Radix Sort) 第一趟:个位 收集: 第二趟:十位 第三趟:百位 3元组 基数排序--不是基于"比较"的排序算法 递增就是把收集的过程返过来 算法效率分析 需要r ...
随机推荐
- carsim2016 与 MATLAB2018 联合仿真send to simulink后编译不成功解决方法
之前使用CarSim8.1和Matlab17b联合仿真时遇到的问题和现在换用Carsim2017之后遇到了不一样的问题.carsim2017界面选择send to simulink 按钮之后,点击运行 ...
- Linux基础学习 | 用户及用户组
Linux 用户及用户组 目录 一.用户 添加用户实例 二.用户组 添加用户组实例 三.用户及用户组文件 四.各命令参数对照 一.用户 Linux系统是一个多用户多任务的分时操作系统.任何 ...
- css盒子模型、垂直外边距合并
css盒子模型由四部分组成:内容(content).填充(padding).边框(border).边距(margin),其中css样式中定义的width属性是定义内容区域的宽度,正常情况下,设置了内容 ...
- Spring-Bean依赖注入(引用数据类型和集合数据类型)
为什么使用spring依赖注入详见–>依赖注入分析 1.创建实体类User类 package com.hao.domain; public class User { private String ...
- JetBrains Rider C# 学习②
前言 C#从入门到精通 链接:https://pan.baidu.com/s/1UveJI_f-c5Dul3GLIICRHg 提取码:1314 C#入门课程 刘铁猛 链接:https://pan.ba ...
- C语言基础部分练习(http://acm.hgnu.edu.cn)
前言 最近有朋友和同学找我要c语言基础练习答案,为了方便分享,放在我的博客上了,如果对你确实有帮助,可以考虑点下赞或打赏哦(都能通过,没有专注于搞算法,所以有的地方可以优化,欢迎在评论区留言) A. ...
- 2021.07.09 K-D树
2021.07.09 K-D树 前置知识 1.二叉搜索树 2.总是很长的替罪羊树 K-D树 建树 K-D树具有二叉搜索树的形态,对于每一个分类标准,小于标准的节点在父节点左边,大于标准的节点在父节点右 ...
- DOS攻击(一)
DOS攻击(一) 介绍 DoS是Denial of Service的简称,即拒绝服务,造成DoS的攻击行为被称为DoS攻击,其目的是使计算机或网络无法提供正常的服务.最常见的DoS攻击有计算机网络带宽 ...
- java使用poi生成excel
使用poi生成excel通常包含一下几个步骤 创建一个工作簿 创建一个sheet 创建一个Row对象 创建一个cell对象(1个row+1个cell构成一个单元格) 设置单元格内容 设置单元格样式. ...
- 『现学现忘』Git基础 — 10、配置Git用户签名说明
目录 1.为什么要创建用户签名 2.为什么要在Git中配置这些信息 3.创建用户签名的方式 4.总结 1.为什么要创建用户签名 作为版本控制系统的客户端,每台客户机对版本库的所有提交操作,都需要注明操 ...