您好,我是湘王,这是我的博客园,欢迎您来,欢迎您再来~

在Java NIO的三大核心中,除了Channel和Buffer,剩下的就是Selector了。有的地方叫它选择器,也有叫多路复用器的(比如Netty)。

之前提过,数据总是从Channel读取到Buffer,或者从Buffer写入到Channel,单个线程可以监听多个Channel——Selector就是这个线程背后的实现机制(所以得名Selector)。

Selector通过控制单个线程处理多个Channel,如果应用打开了多个Channel,但每次传输的流量都很低,使用Selector就会很方便(至于为什么,具体到Netty中再分析)。所以使用Selector的好处就显而易见:用最少的资源实现最多的操作,避免了线程切换带来的开销。

还是以代码为例来演示Selector的作用。新建一个类,在main()方法中输入下面的代码:

/**
* NIO中的Selector
*
* @author xiangwang
*/
public class TestSelector {
public static void main(String args[]) throws IOException {
// 创建ServerSocketChannel
ServerSocketChannel channel1 = ServerSocketChannel.open();
channel1.socket().bind(new InetSocketAddress("127.0.0.1", 8080));
channel1.configureBlocking(false);
ServerSocketChannel channel2 = ServerSocketChannel.open();
channel2.socket().bind(new InetSocketAddress("127.0.0.1", 9090));
channel2.configureBlocking(false); // 创建一个Selector对象
Selector selector = Selector.open();
// 按照字面意思理解,应该是这样的:selector.register(channel, event);
// 但其实是这样的:channel.register(selector, SelectionKey.OP_READ);
// 四种监听事件:
// OP_CONNECT(连接就绪)
// OP_ACCEPT(接收就绪)
// OP_READ(读就绪)
// OP_WRITE(写就绪)
// 注册Channel到Selector,事件一旦被触发,监听随之结束
SelectionKey key1 = channel1.register(selector, SelectionKey.OP_ACCEPT);
SelectionKey key2 = channel2.register(selector, SelectionKey.OP_ACCEPT); // 模板代码:在编写程序时,大多数时间都是在模板代码中添加相应的业务代码
while(true) {
int readyNum = selector.select();
if (readyNum == 0) {
continue;
} Set<SelectionKey> selectedKeys = selector.selectedKeys();
// 轮询
for (SelectionKey key : selectedKeys) {
Channel channel = key.channel();
if (key.isConnectable()) {
if (channel == channel1) {
System.out.println("channel1连接就绪");
} else {
System.out.println("channel2连接就绪");
}
} else if (key.isAcceptable()) {
if (channel == channel1) {
System.out.println("channel1接收就绪");
} else {
System.out.println("channel2接收就绪");
}
}
// 触发后删除,这里不删
// it.remove();
}
}
}
}

代码写好后启动ServerSocketChannel服务,可以看到我这里已经启动成功:

然后在网上下载一个叫做SocketTest.jar的工具(在一些工具网站下载的时候当心中毒,如果不放心,可以私信我,给你地址),双击打开,并按下图方式执行:

点击「Connect」可以看到变化:

然后点击「Disconnect」,再输入「9090」后,再点击「Connect」试试:

可以看到结果显示结果变了:

两次连接,打印了三条信息:说明selector的轮询在起作用(因为Set<SelectionKey>中包含了所有处于监听的SelectionKey)。但是「接收就绪」监听事件仅执行了一次就再不响应。如果感兴趣的话你可以把OP_READ、OP_WRITE这些事件也执行一下试试看。

因为Selector是单线程轮询监听多个Channel,那么如果Selector(线程)之间需要传递数据,怎么办呢?——Pipe登场了。Pipe就是一种用于Selector之间数据传递的「管道」。

先来看个图:

可以清楚地看到它的工作方式。

还是用代码来解释。

/**
* NIO中的Pipe
*
* @author xiangwang
*/
public class TestPipe {
public static void main(String args[]) throws IOException {
// 打开管道
Pipe pipe = Pipe.open(); // 将Buffer数据写入到管道
Pipe.SinkChannel sinkChannel = pipe.sink();
ByteBuffer buffer = ByteBuffer.allocate(32);
buffer.put("ByteBuffer".getBytes());
// 切换到写模式
buffer.flip();
sinkChannel.write(buffer); // 从管道读取数据
Pipe.SourceChannel sourceChannel = pipe.source();
buffer = ByteBuffer.allocate(32);
sourceChannel.read(buffer);
System.out.println(new String(buffer.array())); // 关闭管道
sinkChannel.close();
sourceChannel.close();
}
}

之前说过,同步指的按顺序一次完成一个任务,直到前一个任务完成并有了结果以后,才能再执行后面的任务。而异步指的是前一个任务结束后,并不等待任务结果,而是继续执行后一个任务,在所有任务都「执行」完后,通过任务的回调函数去获得结果。所以异步使得应用性能有了极大的提高。为了更加生动地说明什么是异步,可以来做个实验:

通过调用CompletableFuture.supplyAsync()方法可以很明显地观察到,处于位置2的「这一步先执行」会最先显示,然后才执行位置1的代码。而这就是异步的具体实现。

NIO为了支持异步,升级到了NIO2,也就是AIO。而AIO引入了新的异步Channel的概念,并提供了异步FileChannel和异步SocketChannel的实现。AIO的异步SocketChannel是真正的异步非阻塞I/O。通过代码可以更好地说明:

/**
* AIO客户端
*
* @author xiangwang
*/
public class AioClient {
public void start() throws IOException, InterruptedException {
AsynchronousSocketChannel channel = AsynchronousSocketChannel.open();
if (channel.isOpen()) {
// socket接收缓冲区recbuf大小
channel.setOption(StandardSocketOptions.SO_RCVBUF, 128 * 1024);
// socket发送缓冲区recbuf大小
channel.setOption(StandardSocketOptions.SO_SNDBUF, 128 * 1024);
// 保持长连接状态
channel.setOption(StandardSocketOptions.SO_KEEPALIVE, true);
// 连接到服务端
channel.connect(new InetSocketAddress(8080), null,
new AioClientHandler(channel));
// 阻塞主进程
for(;;) {
TimeUnit.SECONDS.sleep(1);
}
} else {
throw new RuntimeException("Channel not opened!");
}
} public static void main(String[] args) throws IOException, InterruptedException {
new AioClient().start();
}
}
/**
* AIO客户端CompletionHandler
*
* @author xiangwang
*/
public class AioClientHandler implements CompletionHandler<Void, AioClient> {
private final AsynchronousSocketChannel channel;
private final CharsetDecoder decoder = Charset.defaultCharset().newDecoder();
private final BufferedReader input = new BufferedReader(new InputStreamReader(System.in)); public AioClientHandler(AsynchronousSocketChannel channel) {
this.channel = channel;
}
@Override
public void failed(Throwable exc, AioClient attachment) {
throw new RuntimeException("channel not opened!");
}
@Override
public void completed(Void result, AioClient attachment) {
System.out.println("send message to server: ");
try {
// 将输入内容写到buffer
String line = input.readLine();
channel.write(ByteBuffer.wrap(line.getBytes()));
// 在操作系统中的Java本地方法native已经把数据写到了buffer中
// 这里只需要一个缓冲区能接收就行了
ByteBuffer buffer = ByteBuffer.allocate(1024);
while (channel.read(buffer).get() != -1) {
buffer.flip();
System.out.println("from server: " + decoder.decode(buffer).toString());
if (buffer.hasRemaining()) {
buffer.compact();
} else {
buffer.clear();
}
// 将输入内容写到buffer
line = input.readLine();
channel.write(ByteBuffer.wrap(line.getBytes()));
}
} catch (IOException | InterruptedException | ExecutionException e) {
e.printStackTrace();
}
}
}
/**
* AIO服务端
*
* @author xiangwang
*/
public class AioServer {
public void start() throws InterruptedException, IOException {
AsynchronousServerSocketChannel channel = AsynchronousServerSocketChannel.open();
if (channel.isOpen()) {
// socket接受缓冲区recbuf大小
channel.setOption(StandardSocketOptions.SO_RCVBUF, 4 * 1024);
// 端口重用,防止进程意外终止,未释放端口,重启时失败
// 因为直接杀进程,没有显式关闭套接字来释放端口,会等待一段时间后才可以重新use这个关口
// 解决办法就是用SO_REUSEADDR
channel.setOption(StandardSocketOptions.SO_REUSEADDR, true);
channel.bind(new InetSocketAddress(8080));
} else {
throw new RuntimeException("channel not opened!");
}
// 处理client连接
channel.accept(null, new AioServerHandler(channel));
System.out.println("server started");
// 阻塞主进程
for(;;) {
TimeUnit.SECONDS.sleep(1);
}
} public static void main(String[] args) throws IOException, InterruptedException {
AioServer server = new AioServer();
server.start();
}
}
/**
* AIO服务端CompletionHandler
*
* @author xiangwang
*/
public class AioServerHandler implements CompletionHandler<AsynchronousSocketChannel, Void> {
private final AsynchronousServerSocketChannel serverChannel;
private final CharsetDecoder decoder = Charset.defaultCharset().newDecoder();
private final BufferedReader input = new BufferedReader(new InputStreamReader(System.in)); public AioServerHandler(AsynchronousServerSocketChannel serverChannel) {
this.serverChannel = serverChannel;
}
@Override
public void failed(Throwable exc, Void attachment) {
// 处理下一次的client连接
serverChannel.accept(null, this);
}
@Override
public void completed(AsynchronousSocketChannel result, Void attachment) {
// 处理下一次的client连接,类似链式调用
serverChannel.accept(null, this);
try {
// 将输入内容写到buffer
String line = input.readLine();
result.write(ByteBuffer.wrap(line.getBytes()));
// 在操作系统中的Java本地方法native已经把数据写到了buffer中
// 这里只需要一个缓冲区能接收就行了
ByteBuffer buffer = ByteBuffer.allocate(1024);
while (result.read(buffer).get() != -1) {
buffer.flip();
System.out.println("from client: " + decoder.decode(buffer).toString());
if (buffer.hasRemaining()) {
buffer.compact();
} else {
buffer.clear();
}
// 将输入内容写到buffer
line = input.readLine();
result.write(ByteBuffer.wrap(line.getBytes()));
}
} catch (InterruptedException | ExecutionException | IOException e) {
e.printStackTrace();
}
}
}

执行测试后显示,不管是在客户端还是在服务端,读写完全是异步的。


感谢您的大驾光临!咨询技术、产品、运营和管理相关问题,请关注后留言。欢迎骚扰,不胜荣幸~

Java I/O(4):AIO和NIO中的Selector的更多相关文章

  1. epoll浅析以及nio中的Selector

    出处: https://my.oschina.net/hosee/blog/730598 首先介绍下epoll的基本原理,网上有很多版本,这里选择一个个人觉得相对清晰的讲解(详情见reference) ...

  2. epoll 浅析以及 nio 中的 Selector

    首先介绍下epoll的基本原理,网上有很多版本,这里选择一个个人觉得相对清晰的讲解(详情见reference): 首先我们来定义流的概念,一个流可以是文件,socket,pipe等等可以进行I/O操作 ...

  3. Java面试总结之AIO与NIO

    1.Java NIO 是一种同步非阻塞的I/O模型 将多个IO的阻塞复用到同一个select的阻塞上,从而使得系统在单线程的情况下处理多个客户端请求. NIO三个核心对象:通道(Channel).缓冲 ...

  4. 3、nio中的selector使用

    通过编写一个客户端和服务器端的例子来熟悉selector的使用 服务端逻辑: 1. 绑定一个端口号2. channel注册到selector中3. 用死循环来监听如果有时间发生,遍历selection ...

  5. Java网络通信方面,BIO、NIO、AIO、Netty

    码云项目源码地址:https://gitee.com/ZhangShunHai/echo 教学视频地址:链接: https://pan.baidu.com/s/1knVlW7O8hZc8XgXm1dC ...

  6. JAVA - IO - IO的类型(AIO, BIO, NIO)

    IO的方式通常分为几种,同步阻塞的BIO.同步非阻塞的NIO.异步非阻塞的AIO. 一.BIO 在JDK1.4出来之前,我们建立网络连接的时候采用BIO模式,需要先在服务端启动一个ServerSock ...

  7. 温故知新-java的I/O模型-BIO&NIO&AIO

    文章目录 摘要 传统的BIO编程 伪异步I/O编程 NIO编程 AIO编程 几种IO模型的对比 netty 参考 你的鼓励也是我创作的动力 Posted by 微博@Yangsc_o 原创文章,版权声 ...

  8. Java IO模型:BIO、NIO、AIO

    Java IO模型:BIO.NIO.AIO 本来是打算直接学习网络框架Netty的,但是先补充了一下自己对Java 几种IO模型的学习和理解.分别是 BIO.NIO.AIO三种IO模型. IO模型的基 ...

  9. JAVA NIO中的Channels和Buffers

    前言 Channels和Buffers是JAVA NIO里面比较重要的两个概念,NIO正是基于Channels和Buffers进行数据操作,且数据总是从Channels读取到Buffers,或者从Bu ...

随机推荐

  1. Auto.js 调用系统短信、电话

    本文所有教程及源码.软件仅为技术研究.不涉及计算机信息系统功能的删除.修改.增加.干扰,更不会影响计算机信息系统的正常运行.不得将代码用于非法用途,如侵立删! Auto.js 调用系统短信.电话 操作 ...

  2. vue自定义switch开关,使用less支持换肤

    实际项目用到了,记录一下,也方便以后使用,这样也可以避免为了使用一个switch,引入整个外部web框架: 也可以方便更好的理解是和使用less. 基础代码使用的是网上的,然后自己添加了less换肤, ...

  3. ansible 的安装及常见模块使用

    ansible 基础keys的ssh协议配置的 特性:幂等性:一个任务执行1遍和执行n遍效果一样. ansible是个管理软件不是服务,不需要长期运行  一.通过epel源安装ansible, 1.下 ...

  4. Python自学教程5-字符串有哪些常用操作

    任何编程语言,不管是Python.Java 还是 Golang, 字符串都是最重要的一种数据类型. 但是字符串的操作又很多,初学者经常毫无头绪,不知道从哪儿学起,也不知道哪些操作用得多,今天九柄就和你 ...

  5. Miller Rabbin 算法—费马定理+二次探测+随机数 (讲解+例题:FZU1649 Prime number or not)

    0.引入 那年,机房里来了个新教练, 口胡鼻祖lhy 第一节课,带我们体验了暴力的神奇, 第二节课,带我们体验了随机数的玄妙, -- 那节课,便是我第一次接触到Miller Rabbin算法, 直到现 ...

  6. 快速搭建 SpringCloud Alibaba Nacos 配置中心!

    Spring Cloud Alibaba 是阿里巴巴提供的一站式微服务开发解决方案,目前已被 Spring Cloud 官方收录.而 Nacos 作为 Spring Cloud Alibaba 的核心 ...

  7. ansible 003 常用模块

    常用模块 file 模块 管理被控端文件 回显为绿色则,未变更,符合要求 黄色则改变 红色则报错 因为默认值为file,那么文件不存在,报错 改为touch则创建 将state改为directory变 ...

  8. Linux之NFS服务搭建及autofs服务搭建

    NFS 网络文件系统,英文Network File System(NFS),是由SUN公司研制的UNIX表示层协议(presentation layer protocol),能使使用者访问网络上别处的 ...

  9. 线程池:ThreadPoolExecutor源码解读

    目录 1 带着问题去阅读 1.1 线程池的线程复用原理 1.2 线程池如何管理线程 1.3 线程池配置的重要参数 1.4 shutdown()和shutdownNow()区别 1.5 线程池中的两个锁 ...

  10. Linux系统编程001--系统IO

    1. 文件系统:用来存储.组织.管理文件的一套方式.协议 2. 文件 文件的属性:i-node唯一表示一个文件的存在与否 文件的内容 3. Linux系统如何实现文件的操作? 点击查看代码 硬件层: ...