前言

这几天持续摆烂了几天,原因是我自己对于Kaggle电影评论情感分析的这个赛题敲出来的代码无论如何没办法运行,其中数据变换的维度我无法把握好,所以总是在函数中传错数据。今天痛定思痛,重新写了一遍代码,终于成功。

从国籍分类入手

在这个题目之前,给了一个按照姓名分类国籍的写法

https://www.bilibili.com/video/BV1Y7411d7Ys?p=13

按照这个写法我来写这个赛题,代码以及注释如下

'''''''''
构建一个RNN分类器
任务:一个名称分类器,根据输入的名字判断其国籍,数据集有Name与Country
在这个场景中,由于输出无法通过线性层映射到某个维度,所以可以只用hn来连接线性层,对这个输入做一个18维的分类
'''''''''
import csv
import gzip
import torch
import matplotlib.pyplot as plt
import numpy as np
from torch.nn.utils.rnn import pack_padded_sequence
from torch.utils.data import Dataset, DataLoader device = torch.device('cuda:0') HIDDEN_SIZE = 100
BATCH_SIZE = 256
N_LAYER = 2
N_EPOCHS = 100
N_CHARS = 128 # 字符集字典维度 class NameDataset(Dataset): #数据集类
def __init__(self,is_train_set = True):
filename = 'names_train.csv.gz' if is_train_set else 'names_test.csv.gz'
with gzip.open(filename,'rt') as f:
reader = csv.reader(f)
rows = list(reader)
self.names = [row[0] for row in rows] # 把名字字符串存到列表
self.len = len(self.names) # 数据集长度
self.countries = [row[1] for row in rows] # 所有国家字符串存到列表
self.country_list = list(sorted(set(self.countries))) # unique国家列表
self.country_dict = self.getCountryDict()
self.country_num = len(self.country_list) # unique国家数
def __getitem__(self,index):
return self.names[index],self.country_dict[self.countries[index]]
# 返回名称和国家,国家先通过index找到国家,再通过字典映射返回国家的序号
def __len__(self):
return self.len
def getCountryDict(self): # 把unique国家做成字典
country_dict = dict()
for idx,counrty_name in enumerate(self.country_list,0):
country_dict[counrty_name] = idx
return country_dict
def idx2country(self,index):
return self.country_list[index]
def getCountriesNum(self):
return self.country_num # 返回unique国家数 trainset = NameDataset(is_train_set=True)
trainloader = DataLoader(trainset,batch_size=BATCH_SIZE,shuffle=True)
testset = NameDataset(is_train_set=False)
testloader = DataLoader(testset,batch_size=BATCH_SIZE,shuffle=False) N_COUNTRY = trainset.getCountriesNum()
class RNNClassifier(torch.nn.Module):
def __init__(self,input_size,hidden_size,output_size,n_layers=1,bidirectional=True):
super(RNNClassifier, self).__init__()
self.hidden_size = hidden_size
self.n_layers = n_layers
self.n_directions = 2 if bidirectional else 1 self.embedding = torch.nn.Embedding(input_size,hidden_size) # inputs_size是名称字符集长度
self.gru = torch.nn.GRU(hidden_size,hidden_size,n_layers,bidirectional=bidirectional)
self.fc = torch.nn.Linear(hidden_size*self.n_directions,output_size) # output_size是N_COUNTRY def _init_hidden(self,batch_size):
hidden = torch.zeros(self.n_layers*self.n_directions,batch_size,self.hidden_size)
#layers*batch_size*hidden_size
return hidden.to(device) def forward(self,input,seq_lengths):
input = input.t() # b*s to s*b
batch_size = input.size(1)
hidden = self._init_hidden(batch_size)
embedding = self.embedding(input) gru_input = pack_padded_sequence(embedding,seq_lengths.cpu())
# 这是gru和lstm可以接受的一种输入, PackedSequence object
output,hidden = self.gru(gru_input,hidden)
if self.n_directions == 2:
hidden_cat = torch.cat((hidden[-1],hidden[-2]),dim=1)
else:
hiddden_cat = hidden[-1]
fc_output = self.fc(hidden_cat)
return fc_output def name2list(name):
arr = [ord(c) for c in name]
return arr,len(arr)
# 返回输入名字的asci码值的列表,和名字长度
def make_tensors(names,countries): # 把输入数据处理为tensor
sequences_and_lengths = [name2list(name) for name in names]
name_sequences = [sl[0] for sl in sequences_and_lengths]
seq_lengths = torch.LongTensor([sl[1] for sl in sequences_and_lengths]) # seq_lengths to longTensor
countries = countries.long() # index of country to longTensor
# make tensor of name, batchsize*seqlen
seq_tensor = torch.zeros(len(name_sequences),seq_lengths.max()).long()
# 这一句先生成一个二维全0张量,高是名称序列数,宽是最长的名字长度,做成longTensor
for idx,(seq,seq_len) in enumerate(zip(name_sequences,seq_lengths),0):
seq_tensor[idx, :seq_len] = torch.LongTensor(seq) # 复制到上面的全0张量中
# sort sequences by length to use pack_padded_sequence
seq_lengths,perm_idx = seq_lengths.sort(dim=0,descending=True)
# torch中tensor类的tensor返回的是排完序列和索引
seq_tensor = seq_tensor[perm_idx]
countries = countries[perm_idx]
return seq_tensor.to(device),seq_lengths.to(device),countries.to(device) classifier = RNNClassifier(N_CHARS,HIDDEN_SIZE,N_COUNTRY,N_LAYER,True).to(device)
#classifier = classifier.to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(classifier.parameters(),lr=0.001)
#start = time.time() def trainModel():
total_loss = 0
for i,(names,countries) in enumerate(trainloader,1): # i从1开始数
inputs,seq_lengths,target = make_tensors(names,countries)
output = classifier(inputs,seq_lengths) # 这是送的forward的参数.
loss = criterion(output,target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
if i%10 == 0:
print(f'Epoch{epoch}',end='')
print(f'[{i*len(inputs)}/{len(trainset)}]',end='')
print(f'loss={total_loss/(i*len(inputs))}')
return total_loss def testModel():
correct = 0
total = len(testset)
print('evaluating trained model ...')
with torch.no_grad():
for i,(names,countries) in enumerate(testloader,1):
inputs,seq_lengths,target = make_tensors(names,countries)
output = classifier(inputs,seq_lengths)
pred = output.max(dim=1,keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
percent = '%.2f' % (100*correct/total)
print(f'Test set: Accuracy{correct}/{total} {percent}%')
return correct/total print('Training for %d epochs...' % N_EPOCHS)
acc_list = []
for epoch in range(1,30):
trainModel()
acc = testModel()
acc_list.append(acc) epoch = np.arange(1,len(acc_list)+1,1)
acc_list = np.array(acc_list)
plt.plot(epoch,acc_list)
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.grid()
plt.show()



好,下面我们进入赛题部分

赛题理解

赛题以及数据的下载地址如下:https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews

数据就是给出id,评论内容,以及标注好的情感极性,然后经过训练,测试集传入模型判断测试集评论的情感,给出csv格式文件,来进行评分,数据长得就是下面这个样子:

数据处理

由于给出的是tsv格式,所以我们用pandas自带的read来读取,只需要把phrase和sentiment取出来就行了,代码如下:

class NameDataset(Dataset): #数据集类
def __init__(self, is_train_set=True):
train = pd.read_csv('train.tsv', sep='\t') # 分隔符是空格
self.phrase = train['Phrase']
self.sentiment = train['Sentiment']
self.len = len(self.phrase) def __getitem__(self, index):
return self.phrase[index], self.sentiment[index] def __len__(self):
return self.len

由于评论是string字符,我们需要把它转成可以被接受的向量

def phrase2list(phrase):
arr = [ord(c) for c in phrase]
return arr, len(arr)
## 用ASCILL编码来转换字符 def make_tensors(phrase, sentiment):
sequences_and_lengths = [phrase2list(phrase) for phrase in phrase]
phrase_sequences = [sl[0] for sl in sequences_and_lengths]
seq_lengths = torch.LongTensor([sl[1] for sl in sequences_and_lengths])
sentiment = sentiment.long() seq_tensor = torch.zeros(len(phrase_sequences), seq_lengths.max()).long()
for idx, (seq, seq_len) in enumerate(zip(phrase_sequences, seq_lengths), 0):
seq_tensor[idx, :seq_len] = torch.LongTensor(seq)
seq_lengths, prem_idx = seq_lengths.sort(dim=0, descending=True)
seq_tensor = seq_tensor[prem_idx]
sentiment = sentiment[prem_idx]
return seq_tensor.to(device), seq_lengths.to(device), sentiment.to(device)

然后测试集是不需要转变sentiment的,因为根本没有,所以在搞一个专门给测试集传字符

def make_tensors1(phrase):
sequences_and_lengths = [phrase2list(phrase) for phrase in phrase]
phrase_sequences = [sl[0] for sl in sequences_and_lengths]
seq_lengths = torch.LongTensor([sl[1] for sl in sequences_and_lengths]) seq_tensor = torch.zeros(len(phrase_sequences), seq_lengths.max()).long()
for idx, (seq, seq_len) in enumerate(zip(phrase_sequences, seq_lengths), 0):
seq_tensor[idx, :seq_len] = torch.LongTensor(seq)
seq_lengths, prem_idx = seq_lengths.sort(dim=0, descending=True)
seq_tensor = seq_tensor[prem_idx]
_, index = prem_idx.sort(descending=False)
return seq_tensor.to(device), seq_lengths.to(device), index

设计模型

首先我们确定一些超参数

device = torch.device('cuda:0')
NUM_CHARS = 128
HIDDEN_SIZE = 100
NUM_CLASS = 5
NUM_LAYERS = 2
NUM_EPOCHS = 30
BATCH_SIZE = 512

然后我们使用GRU

class RNNClassifier(torch.nn.Module):
def __init__(self, input_size, hidden_size, output_size, n_layers=1, bidirectional=True):
super(RNNClassifier, self).__init__()
self.hidden_size = hidden_size
self.n_layers = n_layers
self.n_direction = 2 if bidirectional else 1 self.embedding = torch.nn.Embedding(input_size, hidden_size)
self.gru = torch.nn.GRU(hidden_size, hidden_size, n_layers, bidirectional=bidirectional)
self.fc = torch.nn.Linear(hidden_size*self.n_direction, output_size) def _init_hidden(self, batch_size):
hidden = torch.zeros(self.n_layers*self.n_direction, batch_size, self.hidden_size)
return hidden.to(device) def forward(self, input, seq_lengths):
input = input.t()
batch_size = input.size(1)
hidden = self._init_hidden(batch_size)
embedding = self.embedding(input) gru_input = pack_padded_sequence(embedding, seq_lengths.cpu())
output, hidden = self.gru(gru_input, hidden)
if self.n_direction == 2:
hidden_cat = torch.cat((hidden[-1], hidden[-2]), dim=1)
else:
hidden_cat = hidden[-1]
fc_output = self.fc(hidden_cat)
return fc_output

模型实例化并设计损失函数和优化器

classifier = RNNClassifier(NUM_CHARS, HIDDEN_SIZE, NUM_CLASS, NUM_LAYERS, True).to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(classifier.parameters(), lr=0.001)

模型训练与测试

首先来设计训练函数

def train():
total_loss = 0
for i, (phrase, sentiment) in enumerate(train_loader, 1):
inputs, seq_lengths, target = make_tensors(phrase, sentiment)
output = classifier(inputs, seq_lengths)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.zero_grad()
optimizer.step()
total_loss += loss.item()
if i % 10 == 0:
print(f'Epoch{epoch}', end='')
print(f'[{i * len(inputs)}/{len(train_set)}]', end='')
print(f'loss={total_loss / (i * len(inputs))}')
return total_loss

然后设计函数来获取测试集数据

def get_test_set():
test_set = pd.read_csv('test.tsv', '\t')
PhraseId = test_set['PhraseId']
test_Phrase = test_set['Phrase']
return PhraseId, test_Phrase

测试函数设计如下

def testModel():
PhraseId, test_Phrase = get_test_set()
sentiment_list = [] # 定义预测结果列表
batchNum = math.ceil(PhraseId.shape[0] / BATCH_SIZE)
with torch.no_grad():
for i in range(batchNum):
print(i)
if i == batchNum - 1:
phraseBatch = test_Phrase[BATCH_SIZE * i:] # 处理最后不足BATCH_SIZE的情况
else:
phraseBatch = test_Phrase[BATCH_SIZE * i:BATCH_SIZE * (i + 1)]
inputs, seq_lengths, org_idx = make_tensors1(phraseBatch)
output = classifier(inputs, seq_lengths)
sentiment = output.max(dim=1, keepdim=True)[1]
sentiment = sentiment[org_idx].squeeze(1)
sentiment_list.append(sentiment.cpu().numpy().tolist())
sentiment_list = list(chain.from_iterable(sentiment_list)) # 将sentiment_list按行拼成一维列表
result = pd.DataFrame({'PhraseId': PhraseId, 'Sentiment': sentiment_list})
result.to_csv('SA_predict.csv', index=False)

开始跑代码

if __name__ == '__main__':
start = time.time()
print('Training for %d epochs...' % NUM_EPOCHS)
acc_list = []
for epoch in range(1, NUM_EPOCHS + 1):
train()
acc = train()
acc_list.append(acc)
if acc <= min(acc_list):
torch.save(classifier, 'sentimentAnalyst.pkl')
print('Save Model!')
testModel()
epoch = [epoch + 1 for epoch in range(len(acc_list))]
plt.plot(epoch, acc_list)
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.grid()
plt.show()

结果



淦,跑完忘记截图platshow的图了,但是我上传kaggle,一跑完只有0.2分,哪里出了问题呢

改成14次,这次截图了





我陷入了沉思

inputs, seq_lengths, target = make_tensors(phrase, sentiment)
output = classifier(inputs, seq_lengths)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.zero_grad()
optimizer.step()
total_loss += loss.item()

问题出在这里

我他妈的一不小心多写了一步 optimizer.zero_grad(),结果跑了几个小时都在原地踏步

现在我们用修改后的模型再试一下

跑完十次的结果和分数如下



完整代码

import math
from itertools import chain
import torch
import matplotlib.pyplot as plt
import pandas as pd
from torch.nn.utils.rnn import pack_padded_sequence
from torch.utils.data import Dataset, DataLoader class NameDataset(Dataset): #数据集类
def __init__(self):
self.train = pd.read_csv('train.tsv', sep='\t')
self.phrase = self.train['Phrase']
self.sentiment = self.train['Sentiment']
self.len = self.train.shape[0] def __getitem__(self, index):
return self.phrase[index], self.sentiment[index] def __len__(self):
return self.len device = torch.device('cuda:0')
NUM_CHARS = 128
HIDDEN_SIZE = 128
NUM_LAYERS = 2
NUM_EPOCHS = 10
BATCH_SIZE = 512
train_set = NameDataset()
train_loader = DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True)
NUM_CLASS = len(set(train_set.sentiment)) class RNNClassifier(torch.nn.Module):
def __init__(self, input_size, hidden_size, output_size, n_layers=1, bidirectional=True):
super(RNNClassifier, self).__init__()
self.hidden_size = hidden_size
self.n_layers = n_layers
self.n_direction = 2 if bidirectional else 1 self.embedding = torch.nn.Embedding(input_size, hidden_size)
self.gru = torch.nn.GRU(hidden_size, hidden_size, n_layers, bidirectional=bidirectional)
self.fc = torch.nn.Linear(hidden_size*self.n_direction, output_size) def _init_hidden(self, batch_size):
hidden = torch.zeros(self.n_layers*self.n_direction, batch_size, self.hidden_size)
return hidden.to(device) def forward(self, input, seq_lengths):
input = input.t()
batch_size = input.size(1)
hidden = self._init_hidden(batch_size)
embedding = self.embedding(input) gru_input = pack_padded_sequence(embedding, seq_lengths.cpu())
output, hidden = self.gru(gru_input, hidden)
if self.n_direction == 2:
hidden_cat = torch.cat((hidden[-1], hidden[-2]), dim=1)
else:
hidden_cat = hidden[-1]
fc_output = self.fc(hidden_cat)
return fc_output def phrase2list(phrase):
arr = [ord(c) for c in phrase]
return arr, len(arr) def make_tensors(phrase, sentiment):
sequences_and_lengths = [phrase2list(phrase) for phrase in phrase]
phrase_sequences = [sl[0] for sl in sequences_and_lengths]
seq_lengths = torch.LongTensor([sl[1] for sl in sequences_and_lengths])
sentiment = sentiment.long() seq_tensor = torch.zeros(len(phrase_sequences), seq_lengths.max()).long()
for idx, (seq, seq_len) in enumerate(zip(phrase_sequences, seq_lengths), 0):
seq_tensor[idx, :seq_len] = torch.LongTensor(seq)
seq_lengths, prem_idx = seq_lengths.sort(dim=0, descending=True)
seq_tensor = seq_tensor[prem_idx]
sentiment = sentiment[prem_idx]
return seq_tensor.to(device), seq_lengths.to(device), sentiment.to(device) def make_tensors1(phrase):
sequences_and_lengths = [phrase2list(phrase) for phrase in phrase]
phrase_sequences = [sl[0] for sl in sequences_and_lengths]
seq_lengths = torch.LongTensor([sl[1] for sl in sequences_and_lengths]) seq_tensor = torch.zeros(len(phrase_sequences), seq_lengths.max()).long()
for idx, (seq, seq_len) in enumerate(zip(phrase_sequences, seq_lengths), 0):
seq_tensor[idx, :seq_len] = torch.LongTensor(seq)
seq_lengths, prem_idx = seq_lengths.sort(dim=0, descending=True)
seq_tensor = seq_tensor[prem_idx]
_, index = prem_idx.sort(descending=False)
return seq_tensor.to(device), seq_lengths.to(device), index def train():
total_loss = 0
for i, (phrase, sentiment) in enumerate(train_loader, 1):
inputs, seq_lengths, target = make_tensors(phrase, sentiment)
output = classifier(inputs, seq_lengths)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
if i % 10 == 0:
print(f'Epoch{epoch}', end='')
print(f'[{i * len(inputs)}/{len(train_set)}]', end='')
print(f'loss={total_loss / (i * len(inputs))}')
return total_loss def get_test_set():
test_set = pd.read_csv('test.tsv', '\t')
PhraseId = test_set['PhraseId']
test_Phrase = test_set['Phrase']
return PhraseId, test_Phrase def testModel():
PhraseId, test_Phrase = get_test_set()
sentiment_list = [] # 定义预测结果列表
batchNum = math.ceil(PhraseId.shape[0] / BATCH_SIZE)
with torch.no_grad():
for i in range(batchNum):
if i == batchNum - 1:
phraseBatch = test_Phrase[BATCH_SIZE * i:] # 处理最后不足BATCH_SIZE的情况
else:
phraseBatch = test_Phrase[BATCH_SIZE * i:BATCH_SIZE * (i + 1)]
inputs, seq_lengths, org_idx = make_tensors1(phraseBatch)
output = classifier(inputs, seq_lengths)
sentiment = output.max(dim=1, keepdim=True)[1]
sentiment = sentiment[org_idx].squeeze(1)
sentiment_list.append(sentiment.cpu().numpy().tolist()) sentiment_list = list(chain.from_iterable(sentiment_list)) # 将sentiment_list按行拼成一维列表
result = pd.DataFrame({'PhraseId': PhraseId, 'Sentiment': sentiment_list})
result.to_csv('SA_predict.csv', index=False) if __name__ == '__main__':
classifier = RNNClassifier(NUM_CHARS, HIDDEN_SIZE, NUM_CLASS, NUM_LAYERS).to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(classifier.parameters(), lr=0.001)
print('Training for %d epochs...' % NUM_EPOCHS)
acc_list = []
for epoch in range(1, NUM_EPOCHS + 1):
train()
acc = train()
acc_list.append(acc)
if acc <= min(acc_list):
torch.save(classifier, 'sentimentAnalyst.pkl')
print('Save Model!') testModel()
epoch = [epoch + 1 for epoch in range(len(acc_list))]
plt.plot(epoch, acc_list)
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.grid()
plt.show()

其实这里可以感觉到验证集的重要性了,因为你很容易过拟合,所以这里附上大佬写的带验证集的代码链接

https://blog.csdn.net/qq_39187959/article/details/121102959

带有验证集可以让模型达到0.7分

【项目实战】Kaggle电影评论情感分析的更多相关文章

  1. 基于Keras的imdb数据集电影评论情感二分类

    IMDB数据集下载速度慢,可以在我的repo库中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行.)中找到下载,下载后放到~/.keras/datasets/目录下,即可正 ...

  2. FastAPI小项目实战:电影列表(Vue3 + FastAPI)

    假期过半, FastAPI + Vue3项目实战 视频也算录完了,尽管项目简单(2张表 共7个接口 4个页面) 起因 在6月底的时候开始录制了FastAPI官方文档中的新手教程部分(实际还没有官网文档 ...

  3. kaggle——Bag of Words Meets Bags of Popcorn(IMDB电影评论情感分类实践)

    kaggle链接:https://www.kaggle.com/c/word2vec-nlp-tutorial/overview 简介:给出 50,000 IMDB movie reviews,进行0 ...

  4. 文本情感分析(一):基于词袋模型(VSM、LSA、n-gram)的文本表示

    现在自然语言处理用深度学习做的比较多,我还没试过用传统的监督学习方法做分类器,比如SVM.Xgboost.随机森林,来训练模型.因此,用Kaggle上经典的电影评论情感分析题,来学习如何用传统机器学习 ...

  5. 文本情感分析(二):基于word2vec、glove和fasttext词向量的文本表示

    上一篇博客用词袋模型,包括词频矩阵.Tf-Idf矩阵.LSA和n-gram构造文本特征,做了Kaggle上的电影评论情感分类题. 这篇博客还是关于文本特征工程的,用词嵌入的方法来构造文本特征,也就是用 ...

  6. 基于情感词典的python情感分析

    近期老师给我们安排了一个大作业,要求根据情感词典对微博语料进行情感分析.于是在网上狂找资料,看相关书籍,终于搞出了这个任务.现在做做笔记,总结一下本次的任务,同时也给遇到有同样需求的人,提供一点帮助. ...

  7. 【API进阶之路】帮公司省下20万调研费!如何巧用情感分析API实现用户偏好调研

    摘要:自从学习API后,仿佛解锁了新技能,可别小看了一个小小的API接口,用好了都是能力无穷.这不,用情感分析API来做用户偏好调研,没想到这么一个小创意给公司省了20万调研费用. 上次借着高考热点整 ...

  8. GraphQL + React Apollo + React Hook 大型项目实战(32 个视频)

    GraphQL + React Apollo + React Hook 大型项目实战(32 个视频) GraphQL + React Apollo + React Hook 大型项目实战 #1 介绍「 ...

  9. kaggle之电影评论文本情感分类

    电影文本情感分类 Github地址 Kaggle地址 这个任务主要是对电影评论文本进行情感分类,主要分为正面评论和负面评论,所以是一个二分类问题,二分类模型我们可以选取一些常见的模型比如贝叶斯.逻辑回 ...

随机推荐

  1. Tapdata 实时数据融合平台解决方案(五):落地

    作者介绍:TJ,唐建法,Tapdata 钛铂数据 CTO,MongoDB中文社区主席,原MongoDB大中华区首席架构师,极客时间MongoDB视频课程讲师. 通过前面几篇文章,我们从企业数据整合与分 ...

  2. 扩展-PageHelper分页插件

    1.PageHelper 分页插件简介 1) PageHelper是MyBatis中非常方便的第三方分页插件 2) 官方文档: https://github.com/pagehelper/Mybati ...

  3. IIS部署的H5的单页面跳转的配置

    <?xml version="1.0" encoding="UTF-8"?><configuration> <system.web ...

  4. HTML及HTTP协议

    web服务的过程: 浏览器发请求 --> HTTP协议 --> 服务端接收请求 --> 服务端返回响应 --> 服务端把HTML文件内容发给浏览器 --> 浏览器渲染页面 ...

  5. 4G巴歇尔槽流量采集网关

    首先向大家展示下拓扑图: 金鸽科技R10物联网网关,带有一个RS485口可以采集巴歇尔槽的液位状态,还提供一个网口用于给摄像头和现场其他的网络设备提供网络传输通道!R10A内置了巴歇尔槽液位换算成流量 ...

  6. v-model原理问题

    v-model的原理 很多同学在理解Vue的时候都把Vue的数据响应原理理解为双向绑定,但实际上这是不准确的,我们之前提到的数据响应,都是通过数据的改变去驱动DOM重新的变化,而双向绑定已有数据驱动D ...

  7. 技术分享 | Update更新慢、死锁等问题的排查思路分享

    欢迎来到 GreatSQL社区分享的MySQL技术文章,如有疑问或想学习的内容,可以在下方评论区留言,看到后会进行解答 一.简介 在开始排错之前我们需要知道 Update 在 MySQL 中的生命周期 ...

  8. NRooks采样类定义和测试

    类声明: #pragma once #ifndef __NROOKS_HEADER__ #define __NROOKS_HEADER__ #include "sampler.h" ...

  9. 前端React项目遇到【Uncaught SyntaxError: Unexpected token '<'】错误的解决方式

    问题描述 前端部署好项目后,打开相应的页面显示一片空白,打开console显示 问题排查思路 理解问题的本质 出现这个错误的原因是浏览器期望得到js文件,但页面却返回了html文件,如图中的js文件点 ...

  10. Postman中的断言

    Postman设置断言 一.断言的定义 1.什么是断言? 一般一个完整的接口测试,包括:请求->获取响应正文->断言,请求和获取响应正文很常见.断言一般是对请求的响应结果做操作,判断预期结 ...