multivariate generating function MGF 多变量生成函数

MGF多变量生成函数multivariate generating function

定义

比如,以前可能让你计数有\(k-1\)个逆序对的n-排列个数\(A(n,k)\)

现在让你计数

指定了n-排列圆分解后各个长度\(j\)的cycles的个数\(\chi_j\),让你计数

或者,指定了各字符出现频数的长n的字符串个数

例子

the exponential MGF of permutation with \(u_1,u_2\) marking the number of 1-cycles and 2-cycles to be

\[P\left(z, u_{1}, u_{2}\right)=\frac{\exp \left(\left(u_{1}-1\right) z+\left(u_{2}-1\right) \frac{z^{2}}{2}\right)}{1-z}
\]

可以想象其实还有其他的\(u_j\),这些\(u_j\)都取1了

如果取$u_1=u_2=1 $ , 对应的是计数所有的n-排列个数的EGF

\[P(z,1,1)=(1-z)^{-1}
\]

对应的计数是\(n!\)

如果\(u_1=0,u_2=1\),给出derangement(错排;长度为1的cycles的个数为0)的EGF

\[P(z,0,1)=e^{-z}/(1-z)
\]

对应的计数是\((n!)(\frac{1}{2!}-\frac{1}{3!}...+(-1)^{n}\frac{1}{(n)!})\)

如果\(u_1=u_2=0\) ,给出所有的cycles长度都大于2的n-排列个数的EGF

\[P(z,0,0)=e^{-z-z^2/2}/(1-z)
\]

对应的计数是$

a(n) = \sum_{i=3..n} \binom{n-1}{i-1}\cdot (i-1)! \cdot a(n-i).a(0)=1,a(1)=0,a(2)=0$ https://oeis.org/A038205

如果置\(u_1=u,u_2=1\),给出有k个singleton cycles(k个位置正好不变)的n-排列的EBGF

\[P(z,u,1)=\frac{e^{(u-1)z}}{1-z}
\]

对应的计数是 \(\tbinom{n}{k}(n-k)!(\frac{1}{2!}-\frac{1}{3!}...+(-1)^{n-k}\frac{1}{(n-k)!})\)

Extremal parameters

现在要研究这样的问题:

比如:

一个例子是the largest component in a combinatorial structure (for instance, the largest cycle of a permutation) ,指定了排列的长度\(n\)和最大的cycle长度\(k\),让你计数

另一个例子是 the maximum degree of nesting of constructions in a recursive structure (typically, the height of a tree). 制定了树的节点数\(n\)和树的的高度\(h\),让你计数

面对这样的问题,(传统的)BGF无能为力。

III.8.1 largest components

例子1 decomposition of permutations

the cycle decomposition of permutations translated by

\[P(z)=\exp \left(\log \frac{1}{1-z}\right)
\]

使用truncation后,得到the EGF of permutations with longest cycle≤ b

\[P^{\langle b\rangle}(z)=\exp \left(\frac{z}{1}+\frac{z^{2}}{2}+\cdots+\frac{z^{b}}{b}\right)
\]

by the way,the EGF of permutations with smallest cycle of size > b

\[\begin{aligned}
\exp(\log \frac{1}{1-z}-\frac{z}{1}-\frac{z^{2}}{2}-\cdots-\frac{z^{b}}{b})=\frac{1}{1-z}\exp(-\frac{z}{1}-\frac{z^{2}}{2}-\cdots-\frac{z^{b}}{b})
\end{aligned}
\]

例子2 words over an m–ary alphabet

the EGF of words over an m–ary alphabet

\[W(z)=(e^z)^m
\]

使用truncation后,得到the EGF of words such that each letter occurs at most b times

\[W^{(b)}(z)=\left(1+\frac{z}{1 !}+\frac{z^{2}}{2 !}+\cdots+\frac{z^{b}}{b !}\right)^{m}
\]

例子3 set partitions

the EGF of set partitions

\[S(z)=exp(e^z-1)
\]

the EGF of set partitions with largest block of size at most b

\[S^{\langle b\rangle}(z)=\exp \left(\frac{z}{1 !}+\frac{z^{2}}{2 !}+\cdots+\frac{z^{b}}{b !}\right)
\]

例子4 the longest run in a sequence of binary draws

\(\mathcal{W}=\operatorname{SEQ}(a) \cdot \operatorname{SEQ}(b \operatorname{SEQ}(a))\)这么写有点正则的感觉,比如aabbbaabaa分解过来就是 aa|b|b|baa|baa

III.8.2 Height

例子1 plane trees

general plane trees定义是这样的

\[\mathcal{G}=\mathcal{N} \times \operatorname{SEQ}(\mathcal{G}) \quad \text { so that } \quad G(z)=\frac{z}{1-G(z)}
\]

定义一个树的高度是最长的分支(branch)的边的个数,那么the set of trees of height\(\leq h\) 满足如下的递归关系

\[\mathcal{G}^{[0]}=\mathcal{N}, \mathcal{G}^{[h+1]}=\mathcal{N} \times \operatorname{SEQ}\left(\mathcal{G}^{[h]}\right)
\]

对应的OGF满足

\[G^{[-1]}(z)=0, G^{[0]}(z)=z, G^{[h+1]}(z)=\frac{z}{1-G^{[h]}(z)}
\]

展开得到(别问连分数怎么打的,问就是\frac套\frac)

\[G^{[h]}(z)=\frac{z}{1-\frac{z}{1-\frac{z}{\frac{\ddots}{1-z}}}}
\]

例子2 plane binary trees

平面二叉树定义如下

\[\mathcal{B}=\mathcal{Z}+\mathcal{B} \times \mathcal{B} \quad \text { so that } \quad B(z)=z+(B(z))^{2}
\]

递归关系是

\[B^{[0]}(z)=z, B^{[h+1]}(z)=z+\left(B^{[h]}(z)\right)^{2}
\]

得到

\[B^{[h]}(z)=z+\left(z+\left(z+(\cdots)^{2}\right)^{2}\right)^{2}
\]

例子3 Cayley trees

CayleyTree词条 所有非叶子节点的度都为\(n\)的树叫n-CayleyTree

Cayley树定义方程

\[\mathcal{T}=\mathcal{Z} \star \operatorname{SET}(\mathcal{T}) \quad \text { so that } \quad T(z)=z e^{T(z)}
\]

有界高度的CayleyTrees的EGF的递归关系

\[T^{[0]}(z)=z, T^{[h+1]}(z)=z e^{T^{[h]}(z)}
\]

得到\(T^{[h]}(z)\)的"连指数“形式

\[T^{[h]}(z)=z e^{z e^{z e^{\cdot^{\cdot^{\cdot^{ze^z}}}}} }
\]

III 8.3 Averages and moments

没看懂


资料来自网络

书用的是Analytic Combinatorics by Philippe Flajolet, Robert Sedgewick

MGF multivariate generating function 多变量生成函数的更多相关文章

  1. 矩量母函数(Moment Generating Function,mgf,又称:动差生成函数)

    在统计学中,矩又被称为动差(Moment).矩量母函数(Moment Generating Function,简称mgf)又被称为动差生成函数. 称exp(tξ)的数学期望为随机变量ξ的矩量母函数,记 ...

  2. 【转】母函数(Generating function)详解 — TankyWoo(红色字体为批注)

    母函数(Generating function)详解 - Tanky Woo 在数学中,某个序列的母函数(Generating function,又称生成函数)是一种形式幂级数,其每一项的系数可以提供 ...

  3. 母函数(Generating function)详解

    母函数(Generating function)详解 在数学中,某个序列的母函数(Generating function,又称生成函数)是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息.使用 ...

  4. polynomial&generating function学习笔记

    生成函数 多项式 形如$\sum_{i=0}^{n}a_i x^i$的代数式称为n阶多项式 核函数 {ai}的核函数为f(x),它的生成函数为sigma(ai*f(i)*x^i) 生成函数的加减 {a ...

  5. 读书笔记 1 of Statistics :Moments and Moment Generating Functions (c.f. Statistical Inference by George Casella and Roger L. Berger)

    Part 1: Moments Definition 1 For each integer $n$, the nth moment of $X$, $\mu_n^{'}$ is \[\mu_{n}^{ ...

  6. 母函数(Generation Function) 入门 + 模板

    转自:母函数 入门 + 模板  感谢 在数学中,某个序列的母函数(Generating function,又称生成函数)是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息.使用母函数解决问题的 ...

  7. 生成函数(TBC)

    生成函数 生成函数 (Generating Function) 的应用简单来说在于研究未知(通项)数列规律,用这种方法在给出递推式的情况下求出数列的通项. 对于一个数列 aaa,称f(x)=∑i=0n ...

  8. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

  9. HDU 2082 母函数模板题

    找单词 Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  10. 整数划分 Integer Partition(一)

    话说今天百度面试,可能是由于我表现的不太好,面试官显得有点不耐烦,说话的语气也很具有嘲讽的意思,搞得我有点不爽.Whatever,面试中有问到整数划分问题,回答这个问题过程中被面试官搞的不胜其烦,最后 ...

随机推荐

  1. Leetcode——二分法bisect_left,bisect_right

    !前提--列表有序 case 1 如果列表中没有元素x,那么bisect_left(ls, x)和bisec_right(ls, x)返回相同的值,该值是x在ls中"合适的插入点索引,使得数 ...

  2. obspy常用命令记录

    如何使用obspy(适用于MAC.Linux.Windows)完全替代SAC(使用于Linux和MAC) 波形预处理 # 去均值 stream.detrend('demean') # 去线性趋势 st ...

  3. scala之函数式编程

    1.面相对象编程和函数式编程 2.函数和方法的区别 scala可以在任何的语法结构中声明任何的语法: scala中函数可以嵌套定义: scala中如果main内部的函数 和 main外部的函数名称.参 ...

  4. GPS数据处理

    GPS数据处理 题目内容: NMEA-0183协议是为了在不同的GPS(全球定位系统)导航设备中建立统一的BTCM(海事无线电技术委员会)标准,由美国国家海洋电子协会(NMEA-The Nationa ...

  5. 3html5

    <label>网址:</label><input type="url" name="" required><br> ...

  6. OSIDP-内存管理-07

    专业术语 页框:内存中固定长度的块. 页:外存中固定长度的块. 段:外存中可变长度的块. 内存管理需求 重定位:程序从内存换出到外存后,再换回内存时,在内存空间中的位置和原先的位置有极大可能不相同.此 ...

  7. webpack配置跨域proxy

    首先新建一个项目: 安装vue-cli: npm i -g @vue/cli npm i -g @vue/cli-init 安装webpack: npm install webpack -g vue新 ...

  8. Vue+SSM+Element-Ui实现前后端分离(1)

    前言:最近学习vue,就突发奇想,小菜鸟的我是时候锻炼锻炼自己.闲话不说,整起 <-_-> 整体规划:先搭建前端,接下来后端,最后整合. 一.创建vue项目 1.安装nodejs( 傻瓜式 ...

  9. IDEA创建Spring Boot项目无法连接http://start.spring.io 解决方法

    1.修改代理 2. 搭建自己的SpringBoot initializer构建服务器 https://blog.csdn.net/KingBoyWorld/article/details/773732 ...

  10. Otto Group Product Classification

    遇到的坑: 做多分类,用CrossEntropyLoss时,训练时候的正确标签的范围应该是[0,n-1],而不是[1,n],不然会报 IndexError: Target is out of boun ...