知识点简单总结——minmax容斥

minmax容斥

好像也有个叫法叫最值反演?

就是这样的一个柿子:

\[max(S) = \sum\limits_{ T \subseteq S } min(T) \times (-1)^{|T|-1}
\]

用 $ Max $ 来求 $ Min $ 也一样可行。

证明不太难,所以干脆咕了,随便找个证明

应用

由于期望的线性性,以上公式对于每个元素的期望也是成立的,

可以写作 $ E( max(S) ) = \sum\limits_{T \subseteq S} E( min(T) ) $ 。

这个是比较有用的,因为很明显 $ E( max(S) ) \ne max( E(S) ) $ ,这个是不容易轻易用正常方法求出的。

例题

[HAOI2015]按位或

要求求出 $ E( max(U) ) $ 。

很明显求不出来所以考虑改求 $ E( min(S) ) $ 。

考虑有 $ P( min(T) == k ) = P( S \oplus U ) ^ {k-1} ( 1 - P( S \oplus U ) ) $ 。

几何分布,很容易得出 $ E( min(S) ) = \frac{ 1 }{ 1 - P'( S \oplus U )} $ ,其中 $ P'(S) = \sum\limits_{T \subseteq S} P(T) $ 。

$ FWT $ 变换一下即可出解,注意特判 $ \le eps $ 。

[PKUWC2018]随机游走

依然改求 $ E( min(S) ) $ 。

也就是求经过某个集合中至少一个点时的期望步数。

设 $ f_{S,x} $ 为从 $ x $ 出发,到达 $ S $ 中某个点时的期望步数,很明显 $ E( min(S) ) = f_{S,root} $ 。

\[f_{S,x} = \frac{ f_{ S,fa_{ x } } + \sum\limits_{ y \in son_{ x } } f_{ S,y } }{ deg_{ x } } + 1
\]

为了分离父亲对其贡献,考虑转化成 $ f_{S,x} = A_{x} * f_{ S , fa_{ x } } +B_{x} $ 。

解完之后发现与父亲的值无关,可以直接树形dp。

然后直接minmax容斥就完事了。

扩展minmax容斥

\[\max\limits_{k}(S) = \sum\limits_{ T \subseteq S } min(T) \times (-1)^{|T|-k} \times \binom{|T|-1}{k-1}
\]

$ \max\limits_{k}(S) $ 表示第 $ k $ 大。

证明需要用到二项式定理,也咕了。

依然对期望成立。

例题

重返现世

注意到 $ |n-k| \le 10 $ 。

很明显答案要求 $ E(\min\limits_{k}(U)) $ ,等效于 $ E(\max\limits_{n-k+1}(U)) $ 。

那么求 $ E(min(S)) $ 就好。

问题来了。

$ n \le 1000 $ ,不能直接做。

但是 $ m \le 10000 $ ,可以从这里下手设计dp。

然后再往下的我不会了。

很明显 $ E(min(S)) = \frac{1}{ \sum\limits_{i \in S} p_{i} } $ 。

考虑用dp统计对于每个 $ \sum\limits_{i \in S} p_{i} $ 的值的系数和。

具体的dp设计它咕了。

知识点简单总结——minmax容斥的更多相关文章

  1. 按位或:多项式,FWT,min-max容斥

    Description: 刚开始你有一个数字0,每一秒钟你会随机选择一个$[0,2^n)$的数字,与你手上的数字进行或(C++, C 的 |, Pascal 的 or)操作. 选择数字i的概率是$p_ ...

  2. 【Luogu4707】重返现世(min-max容斥)

    [Luogu4707]重返现世(min-max容斥) 题面 洛谷 求全集的\(k-max\)的期望 题解 \(min-max\)容斥的证明不难,只需要把所有元素排序之后考虑组合数的贡献,容斥系数先设出 ...

  3. HDU - 4336:Card Collector(min-max容斥求期望)

    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...

  4. hdu 4336 Card Collector —— Min-Max 容斥

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4336 bzoj 4036 的简单版,Min-Max 容斥即可. 代码如下: #include<cst ...

  5. Min-Max 容斥的证明

    这里有 Min-Max 容斥的证明以及唯一一道博主做过的例题... 上个结论: \[Min\{S\}=\sum_{T\subseteq S,T\not=\varnothing}(-1)^{|T|-1} ...

  6. 容斥原理+补集转化+MinMax容斥

    容斥原理的思想大家都应该挺熟悉的,然后补集转化其实就是容斥原理的一种应用. 一篇讲容斥的博文https://www.cnblogs.com/gzy-cjoier/p/9686787.html 当我们遇 ...

  7. UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp

    LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据 ...

  8. 洛谷 P4707 - 重返现世(扩展 Min-Max 容斥+背包)

    题面传送门 首先看到这种求形如 \(E(\max(T))\) 的期望题,可以套路地想到 Min-Max 容斥 \(\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T| ...

  9. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

随机推荐

  1. Solution -「SHOI2016」「洛谷 P4336」黑暗前的幻想乡

    \(\mathcal{Description}\)   link.   有一个 \(n\) 个结点的无向图,给定 \(n-1\) 组边集,求从每组边集选出恰一条边最终构成树的方案树.对 \(10^9+ ...

  2. Process Doppelg&#228;nging

    进程注入:Process Doppelgänging   攻击者可以通过Process Doppelgänging将恶意代码注入到进程中,从而逃避基于进程的防护,并且进行可能的特权提升.Process ...

  3. SpringMVC--@RequestMapping注解标注方法解析

    SpringMVC--@RequestMapping注解标注方法解析 本文是基于springboot进行源码追踪分析 问题 @RequestMapping注释的类及方法,Spring是何时,何种方式解 ...

  4. 使用 Spring Cloud Jaeger 进行分布式跟踪

    在本文中,学习如何实现 Jaeger(基于 OpenTracing 和 Spring Boot 应用程序)以及如何使用 Jaeger UI 可视化跟踪. 介绍 在本文中,我们将探讨如何使用 Jaege ...

  5. 什么,有狗快跑!慢着,这次手把手教你怎么过安全狗!(sql注入篇)

    前言 在记忆里上次绕安全狗还是在上次,开开心心把自己之前绕过狗的payload拿出来,发现全部被拦截了,事情一下子就严肃起来了,这就开整. 环境 本次环境如下sqli-lab的sql注入靶场 网站安全 ...

  6. MShadow中的表达式模板

    表达式模板是Eigen.GSL和boost.uBLAS等高性能C++矩阵库的核心技术.本文基于MXNet给出的教程文档来阐述MXNet所依赖的高性能矩阵库MShadow背后的原理. 编写高效的机器学习 ...

  7. 学习Spring5必知必会(5)~Spring AOP

    一.学习 AOP 思想的准备工作: 1.横切面关注点 在开发中,为了给业务方法中增加日志记录,权限检查,事务控制等功能,此时我们需要在修改业务方法内添加这些零散的功能代码(横切面关注点). 这些零散存 ...

  8. Android系统编程入门系列之硬件交互——无线通信WLAN

    Android系统的移动设备大多支持无线WLAN技术.利用该技术,不仅能实现互联网通信,还能实现无线定位,热点共享等远程通信功能.针对使用WLAN的不同功能,可能需要分别申请不同的权限声明,同时调用不 ...

  9. Web安全学习

    项目地址(参考):https://websec.readthedocs.io/zh/latest/basic/history.html 本文只能充当目录简介,具体还要自己深入学习. 序章 Web技术演 ...

  10. JZ-057-二叉树的下一个结点

    二叉树的下一个结点 题目描述 给定一个二叉树和其中的一个结点,请找出中序遍历顺序的下一个结点并且返回.注意,树中的结点不仅包含左右子结点,同时包含指向父结点的指针. 题目链接: 二叉树的下一个结点 代 ...