知识点简单总结——minmax容斥
知识点简单总结——minmax容斥
minmax容斥
好像也有个叫法叫最值反演?
就是这样的一个柿子:
\]
用 $ Max $ 来求 $ Min $ 也一样可行。
证明不太难,所以干脆咕了,随便找个证明。
应用
由于期望的线性性,以上公式对于每个元素的期望也是成立的,
可以写作 $ E( max(S) ) = \sum\limits_{T \subseteq S} E( min(T) ) $ 。
这个是比较有用的,因为很明显 $ E( max(S) ) \ne max( E(S) ) $ ,这个是不容易轻易用正常方法求出的。
例题
[HAOI2015]按位或
要求求出 $ E( max(U) ) $ 。
很明显求不出来所以考虑改求 $ E( min(S) ) $ 。
考虑有 $ P( min(T) == k ) = P( S \oplus U ) ^ {k-1} ( 1 - P( S \oplus U ) ) $ 。
几何分布,很容易得出 $ E( min(S) ) = \frac{ 1 }{ 1 - P'( S \oplus U )} $ ,其中 $ P'(S) = \sum\limits_{T \subseteq S} P(T) $ 。
$ FWT $ 变换一下即可出解,注意特判 $ \le eps $ 。
[PKUWC2018]随机游走
依然改求 $ E( min(S) ) $ 。
也就是求经过某个集合中至少一个点时的期望步数。
设 $ f_{S,x} $ 为从 $ x $ 出发,到达 $ S $ 中某个点时的期望步数,很明显 $ E( min(S) ) = f_{S,root} $ 。
\]
为了分离父亲对其贡献,考虑转化成 $ f_{S,x} = A_{x} * f_{ S , fa_{ x } } +B_{x} $ 。
解完之后发现与父亲的值无关,可以直接树形dp。
然后直接minmax容斥就完事了。
扩展minmax容斥
\]
$ \max\limits_{k}(S) $ 表示第 $ k $ 大。
证明需要用到二项式定理,也咕了。
依然对期望成立。
例题
注意到 $ |n-k| \le 10 $ 。
很明显答案要求 $ E(\min\limits_{k}(U)) $ ,等效于 $ E(\max\limits_{n-k+1}(U)) $ 。
那么求 $ E(min(S)) $ 就好。
问题来了。
$ n \le 1000 $ ,不能直接做。
但是 $ m \le 10000 $ ,可以从这里下手设计dp。
然后再往下的我不会了。
很明显 $ E(min(S)) = \frac{1}{ \sum\limits_{i \in S} p_{i} } $ 。
考虑用dp统计对于每个 $ \sum\limits_{i \in S} p_{i} $ 的值的系数和。
具体的dp设计它咕了。
知识点简单总结——minmax容斥的更多相关文章
- 按位或:多项式,FWT,min-max容斥
Description: 刚开始你有一个数字0,每一秒钟你会随机选择一个$[0,2^n)$的数字,与你手上的数字进行或(C++, C 的 |, Pascal 的 or)操作. 选择数字i的概率是$p_ ...
- 【Luogu4707】重返现世(min-max容斥)
[Luogu4707]重返现世(min-max容斥) 题面 洛谷 求全集的\(k-max\)的期望 题解 \(min-max\)容斥的证明不难,只需要把所有元素排序之后考虑组合数的贡献,容斥系数先设出 ...
- HDU - 4336:Card Collector(min-max容斥求期望)
In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...
- hdu 4336 Card Collector —— Min-Max 容斥
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4336 bzoj 4036 的简单版,Min-Max 容斥即可. 代码如下: #include<cst ...
- Min-Max 容斥的证明
这里有 Min-Max 容斥的证明以及唯一一道博主做过的例题... 上个结论: \[Min\{S\}=\sum_{T\subseteq S,T\not=\varnothing}(-1)^{|T|-1} ...
- 容斥原理+补集转化+MinMax容斥
容斥原理的思想大家都应该挺熟悉的,然后补集转化其实就是容斥原理的一种应用. 一篇讲容斥的博文https://www.cnblogs.com/gzy-cjoier/p/9686787.html 当我们遇 ...
- UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp
LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据 ...
- 洛谷 P4707 - 重返现世(扩展 Min-Max 容斥+背包)
题面传送门 首先看到这种求形如 \(E(\max(T))\) 的期望题,可以套路地想到 Min-Max 容斥 \(\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T| ...
- [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...
随机推荐
- Solution -「OurOJ 46544」漏斗计算
\(\mathcal{Description}\) Link. 定义一个运算结点 \(u\) 有两个属性:当前容量 \(x_u\).最大容量 \(V_u\).提供以下单元操作: I 读入一个整 ...
- Vue2.0源码学习(4) - 合并配置
合并配置 通过之前的源码学习,我们已经了解到了new Vue主要有两种场景,第一种就是在外部主动调用new Vue创建一个实例,第二个就是代码内部创建子组件的时候自行创建一个new Vue实例.但是无 ...
- JMM之Java中锁概念的分类总结
在Java的并发编程中不可避免的涉及到锁.从不同维护可以将锁进行不同的分类,如下: 1.乐观锁和悲观锁(根据读写操作的比例划分) 乐观锁是一种乐观思想,即认为读多写少,遇到并发写的可能性低,每次去拿数 ...
- 显式锁之ReentrantLock实现
下图是Lock接口清单,定义了一些抽象的锁操作.Java本身提供了内部锁机制,那么还需要显示Lock,何用?与内部加锁机制不同,Lock提供了无条件.可轮询.定时.可中断的锁获取操作:所有加锁和解锁的 ...
- jenkins发布代码选择不同分支
jenkins上传代码分支以前都是用变量的方式,手动实现.过程就像这样 构建时候的界面就像下面这样,需要手动输入分支版本. 或者有固定的上线分支,用参数化构建 选项参数 来选择.总之这些方法比较传统, ...
- kaptcha验证码参数设置
Constant 描述 默认值 kaptcha.border 图片边框,合法值:yes , no yes kaptcha.border.color 边框颜色,合法值: r,g,b (and optio ...
- IDEA使用JDBC链接MySql(java编程)
1.在Maven的pom.xml文件中引入MySql的驱动 <dependency> <groupId>mysql</groupId> <artifactId ...
- 深入理解Cache工作原理
内容来源:https://zhuanlan.zhihu.com/p/435031232 内容来源:https://zhuanlan.zhihu.com/p/102293437 本文主要内容如下,基本涉 ...
- 【c# 操作符】- nameof用法
最重要的是nameof不会影响性能! nameof有什么用?主要用解决 类成员名做参数替代成员们的字符串做参数,如下: using System; namespace csharp6 { intern ...
- QT:中文字符串与“常量中有字符串”报错
解决方法参照: (10条消息) Qt5.9 win7系统 中文字符串报错:常量中有字符串_Be busy living or busy dying-CSDN博客 主要是用QStringLiteral( ...