Min_25 Sieve 学习笔记
这个东西不是人想的。
解决问题:积性函数前缀和。
适用条件:可以快速计算 \(f(p)\) 的前缀和,\(f(p^k)\) 可以被表示成若干完全积性函数的线性组合(指对应项可以快速组合出来)。
时空复杂度:就当是 \(O(\dfrac{n^\frac{3}{4}}{\log n}+n^{1-\epsilon})-O(\sqrt n)\)。
以下默认 \(f(p)\) 为关于 \(p\) 的单项式,\(p_i\) 为第 \(i\) 个质数。
求质数处的前缀和
我们需要对于每个能被表示成 $\lfloor \dfrac{n}{x}\rfloor $ 的数,求所有在其前的质数 \(p\) 的 \(\sum f(p)\)。注意到一个数的最小质因子小等于 \(\sqrt n\),我们设计一个 dp:\(g_{i,j}\) 表示最小质因子大于 \(p_i\),\([1,j]\) 的所有数的 \(f\) 之和。转移时把最小质因子为 的 \(p_i\) 数的 \(f\) 全部删去,即得转移,注意容斥掉前面的质数的贡献:
\]
这就体现出完全积性的重要性。求和号部分可以在线筛质数的时候预处理出来。第一维显然可以滚动数组优化掉,而对于第二维,$\lfloor \dfrac{n}{x}\rfloor $ 只有 \(O(\sqrt n)\) 个,预处理出来,大于 \(\sqrt n\) 的编号为 \(n/\sqrt n\) 即可。
我们把筛去所有最小质因子后的得到的 dp 数组记为 \(g\)。
求原函数前缀和
设 \(s_{n,i}\) 表示 \([1,n]\) 最小质因子大于 \(p_i\) 的所有数的 \(f\) 之和。枚举最小质因子及其次数,得到转移
\]
根据神奇的复杂度分析,可以直接递归下去做。
最后加上 \(1\) 的贡献。
Min_25 Sieve 学习笔记的更多相关文章
- Min_25筛 学习笔记
这儿只是一个简单说明/概括/总结. 原理见这: https://www.cnblogs.com/cjyyb/p/9185093.html https://www.cnblogs.com/zhoushu ...
- Min_25 筛 学习笔记
原文链接https://www.cnblogs.com/zhouzhendong/p/Min-25.html 前置技能 埃氏筛法 整除分块(这里有提到) 本文概要 1. 问题模型 2. Min_25 ...
- 洲阁筛 & min_25筛学习笔记
洲阁筛 给定一个积性函数$F(n)$,求$\sum_{i = 1}^{n}F(n)$.并且$F(n)$满足在素数和素数次幂的时候易于计算. 显然有: $\sum_{i = 1}^{n} F(n) = ...
- Min_25筛学习笔记
感觉好好用啊 Luogu上的杜教筛模版题一发 Min_25抢到了 rank1 $ Updated \ on 11.29 $被 STO txc ORZ踩爆啦 前言 $ Min$_$25$筛可以求积性函数 ...
- min_25筛学习笔记【待填坑】
看见ntf和pb两位大佬都来学了,然后就不自觉的来学了. 我们考虑这样一个问题. $$ans=\sum_{i=1}^nf(i)$$其中$1\leq n\leq 10^{10}$ 其中$f(i)$是一个 ...
- $Min\_25$筛学习笔记
\(Min\_25\)筛学习笔记 这种神仙东西不写点东西一下就忘了QAQ 资料和代码出处 资料2 资料3 打死我也不承认参考了yyb的 \(Min\_25\)筛可以干嘛?下文中未特殊说明\(P\)均指 ...
- 《软件调试的艺术》学习笔记——GDB使用技巧摘要
<软件调试的艺术>学习笔记——GDB使用技巧摘要 <软件调试的艺术>,因为名是The Art of Debugging with GDB, DDD, and Eclipse. ...
- 初等数论学习笔记 III:数论函数与筛法
初等数论学习笔记 I:同余相关. 初等数论学习笔记 II:分解质因数. 1. 数论函数 本篇笔记所有内容均与数论函数相关.因此充分了解各种数论函数的名称,定义,符号和性质是必要的. 1.1 相关定义 ...
- js学习笔记:webpack基础入门(一)
之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...
- PHP-自定义模板-学习笔记
1. 开始 这几天,看了李炎恢老师的<PHP第二季度视频>中的“章节7:创建TPL自定义模板”,做一个学习笔记,通过绘制架构图.UML类图和思维导图,来对加深理解. 2. 整体架构图 ...
随机推荐
- 1、Java数据类型
1.基本数据类型的变量: /** * 1.基本数据类型的变量: * * 1).整数类型:byte(1字节=8bit),short(2字节),int(4字节),long(8字节) * * 2).浮点数类 ...
- App几个可能造成内存泄漏的情况:
App几个可能造成内存泄漏的情况: 1.block块中直接用self调用,self将会被block copy到内部增加一次饮用计数,形成循环引用 在block里调用self会不会造成循环引用和这个bl ...
- Less常用功能使用
Less 是一门 CSS 预处理语言,它扩充了 CSS 语言,增加了诸如变量.混合(mixin).函数等功能,让 CSS 更易维护.方便制作主题.扩充.Less 可以运行在 Node 或浏览器端. L ...
- 使用小黄鸟(HttpCanary)+模拟器(VMOS Pro)对手机APP进行抓包
最近接触app开发,苦于app端不能像网页端可以F12看请求信息,对于后端来说当接口出现异常却不能拿到请求参数是很苦恼的, 因为之前了解过逍遥模拟器,先使用了模拟器对appj进行抓包,但发现这一款ap ...
- vue中使用echarts来绘制中国地图,NuxtJS制作疫情地图,内有详细注释,我就懒得解释了,vue cli制作疫情地图 代码略有不同哦~~~
我的代码自我感觉----注释一向十分详细,就不用过多解释都是什么了~~ 因为最近疫情期间在家实在是没事干,想找点事,就练手了个小demo 首先上 NuxtJs版本代码,这里面 export defau ...
- dapr入门与本地托管模式尝试
1 简介 Dapr是一个可移植的.事件驱动的运行时,它使任何开发人员能够轻松构建出弹性的.无状态和有状态的应用程序,并可运行在云平台或边缘计算中,它同时也支持多种编程语言和开发框架.Dapr支持的语言 ...
- Containerd NRI 插件
Github:https://github.com/containerd/nri.git Slide:https://static.sched.com/hosted_files/kccncna2022 ...
- C-08\变量类别和名称粉碎机制
全局变量 定义:在所有函数外部定义的变量称为全局变量,一般以g_开头,如 char g_szBuf[100]; // 全局变量g_szBuf int main() { printf("%s\ ...
- vue3 ts遇到的问题
main.ts中的 createApp(App),只作用于一个,如果,有两个,则并不是一个对象,另一个会不生效
- Tengine01
1 简介 Tengine是nginx的一个版本 Tengine文档:http://tengine.taobao.org/ nginx官网: http://nginx.org Nginx (" ...