本文介绍基于PythonOneHotEncoderpd.get_dummies两种方法,实现机器学习中最优的编码方法——独热编码的方法。

  在数据处理与分析领域,对数值型与字符型类别变量加以编码是不可或缺的预处理操作;这里介绍两种不同的方法。

1 OneHotEncoder

  首先导入必要的模块。

  1. import pandas as pd
  2. from sklearn.preprocessing import OneHotEncoder

  其中,OneHotEncoder是我们实现独热编码的关键模块。

  接下来,导入并显示数据前五行。

  1. test_data_1=pd.read_csv('G:/CropYield/03_DL/00_Data/onehot_test.csv',names=['EVI0610','EVI0626','SoilType'],header=0)
  2. test_data_1.head(5)

  关于这里导入数据代码的解释,大家可以查看多变量两两相互关系联合分布图的Python绘制Python TensorFlow深度学习回归代码:DNNRegressor这两篇文章,这里就不再赘述啦~

  数据前五行展示如下图。其中,前两列'EVI0610''EVI0626'为数值型连续变量,而'SoilType'为数值型类别变量。我们要做的,也就是将第三列'SoilType'进行独热编码。

  接下来,进行独热编码的配置。

  1. ohe=OneHotEncoder(handle_unknown='ignore')
  2. ohe.fit(test_data_1)

  在这里,第一行是对独热编码的配置,第二行则是对我们刚刚导入的数据进行独热编码处理。得到一个独热编码配置的输出结果。

  接下来,看看独热编码处理后,将我们的数据分成了哪些类别。

  1. ohe.categories_

  得到结果如下图。

  可以发现,一共有三个array,为什么呢?仔细看可以发现,独热编码是将我们导入的三列数据全部都当作类别变量来处理了。之所以会这样,是因为我们在一开始没有表明哪一列是类别变量,需要进行独热编码;而哪一列不是类别变量,从而不需要进行独热编码。

  那么,我们如何实现上述需求,告诉程序我们要对哪一行进行独热编码呢?在老版本的sklearn中,我们可以借助categorical_features=[x]参数来实现这一功能,但是新版本sklearn取消了这一参数。那么此时,一方面,我们可以借助ColumnTransformer来实现这一过程,另一方面,我们可以直接对需要进行转换的列加以处理。后者相对较为容易理解,因此本文对后者进行讲解。

  我们将test_data_1中的'SoilType'列作为索引,从而仅仅对该列数据加以独热编码。

  1. ohe_column=pd.DataFrame(ohe.fit_transform(test_data_1[['SoilType']]).toarray())
  2. ohe_column.head(5)

  其中,[['SoilType']]表示仅仅对这一列进行处理。得到结果如下图。

  可以看到,原来的'SoilType'列现在成为了63列的编码列,那么这样的话,说明我们原先的'SoilType'应该一共是有63个不同的数值。是不是这个样子呢?我们来检查一下。

  1. count=pd.DataFrame(test_data_1['SoilType'].value_counts())
  2. print(count)

  得到结果如下。

  好的,没有问题:可以看到此结果共有63行,也就是'SoilType'列原本是有63个不同的值的,证明我们的独热编码没有出错。

  此时看一下我们的test_data_1数据目前长什么样子。

  1. test_data_1.head(5)

  是的,我们仅仅对'SoilType'列做了处理,没有影响到整个初始数据。那么先将原本的'SoilType'列剔除掉。

  1. test_data_1=test_data_1.drop(['SoilType'],axis=1)
  2. test_data_1.head(5)

  再将经过独热编码处理后的63列加上。

  1. test_data_1.join(ohe_column)

  大功告成!

  但是这里还有一个问题,我们经过独热编码所得的列名称是以数字来命名的,非常不方便。因此,有没有什么办法可以在独热编码进行的同时,自动对新生成的列加以重命名呢?

2 pd.get_dummies

  pd.get_dummies是一个最好的办法!其具体用法与上述OneHotEncoder类似,因此具体过程就不再赘述啦,大家看代码就可以明白。

  首先还是导入与上述内容中一致的初始数据。

  1. test_data_2=pd.read_csv('G:/CropYield/03_DL/00_Data/onehot_test.csv',names=['EVI0610','EVI0626','SoilType'],header=0)
  2. test_data_2.head(5)

  进行独热编码并看看结果。

  1. test_data_2_ohe=pd.get_dummies(test_data_2,columns=['SoilType'])
  2. test_data_2_ohe.head(5)

  最终结果中,列名称可以说是非常醒目,同时,共有65列数据,自动删除了原本的'SoilType'列,实现了“独热编码”“新列重命名”与“原始列删除”,可谓一举三得,简直是太方便啦~

Python实现类别变量的独热编码(One-hot Encoding)的更多相关文章

  1. 【转】数据预处理之独热编码(One-Hot Encoding)

    原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. ...

  2. 数据预处理:独热编码(One-Hot Encoding)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  3. 数据预处理:独热编码(One-Hot Encoding)和 LabelEncoder标签编码

    一.问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 离散特征的编码分为两种情况: 1.离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one- ...

  4. 数据预处理之独热编码(One-Hot Encoding)(转载)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  5. 机器学习实战:数据预处理之独热编码(One-Hot Encoding)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  6. 机器学习 数据预处理之独热编码(One-Hot Encoding)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  7. 数据预处理之独热编码(One-Hot Encoding)

    问题的由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑以下三个特征: ["male","female"] ["from ...

  8. 虚拟变量和独热编码的区别(Difference of Dummy Variable & One Hot Encoding)

    在<定量变量和定性变量的转换(Transform of Quantitative & Qualitative Variables)>一文中,我们可以看到虚拟变量(Dummy Var ...

  9. OneHotEncoder独热编码和 LabelEncoder标签编码

    学习sklearn和kagggle时遇到的问题,什么是独热编码?为什么要用独热编码?什么情况下可以用独热编码?以及和其他几种编码方式的区别. 首先了解机器学习中的特征类别:连续型特征和离散型特征 拿到 ...

  10. 机器学习:数据预处理之独热编码(One-Hot)

    前言 ———————————————————————————————————————— 在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等.这些特征值并不是连续的 ...

随机推荐

  1. CSP-J2022 题解报告

    \(CSP-J2022\) 题解报告 \(T1\) 乘方: 发现 \(2^{32}>10^9\),所以这个题只需要特判 \(a=1\) 的情况为 \(1\),其他直接枚举再判断即可. Code: ...

  2. 自学 TypeScript 第三天 使用webpack打包 TS 代码

    前言: 大家好啊,昨天介绍了 TS 编译器的配置,但在我们实际开发当中直接使用 TS 编译器去编译代码的情况会有,但没有很多,因为我们在开发大型项目的时候,一般我们都会用到打包工具,也不可能脱离打包工 ...

  3. Cache的相关知识(二)

    1. cache背景知识 为什么的CPU内部需要cache单元?   主要的原因是CPU的速度和内存的速度之间严重不匹配,Cpu处理速度极快,而访问内存慢,cache在这个背景下就诞生了.设计人员通过 ...

  4. [Android开发学iOS系列] TableView展现一个list

    TableView 基础 本文讲讲TableView的基本使用. 顺便介绍一下delegation. TableView用来做什么 TableView用来展示一个很长的list. 和Android中的 ...

  5. Python3.7.3安装TensorFlow和OpenCV3

    根据python的版本进行下载相应的文件 一.安装TensorFlow 进入网址https://pypi.org/project/tensorflow/#files下载TensorFlow文件 进入下 ...

  6. 4.5:HDFS操作实验

    〇.概述 1.拓扑结构 2.目标 进行HDFS的实验,了解HDFS的基本操作. 一.常用操作 1.启动 50070 2.查看及创建 3.上传文件

  7. gulp4.0构建任务

    执行default任务时,依次执行以下任务 gulp.task('default', ['htmlmin', 'cssmin', 'jsmin', 'copy']); 报错:Task function ...

  8. 前端知识之JS(javascirpt)

    目录 JS简介 JS基础 1.注释语法 2.引入JS的多种方式 3.结束符号 变量与常量 基本数据类型 1.数字类型(Number) 2.字符类型(string) 3.布尔类型(Boolean) 4. ...

  9. if-else 的优美写法

    前言‍♂️ 相信大家或多或少都接触过拥有庞大 if else 的项目代码吧,多重嵌套的 if else 在维护的时候真的让人很恼火,有时候一个 bug 排查下来,严重感觉身体被掏空. 本文并未有消灭或 ...

  10. css处理渲染的图片变形问题:object-fit: cover

    object-fit: cover完美解决!~