本文介绍基于PythonOneHotEncoderpd.get_dummies两种方法,实现机器学习中最优的编码方法——独热编码的方法。

  在数据处理与分析领域,对数值型与字符型类别变量加以编码是不可或缺的预处理操作;这里介绍两种不同的方法。

1 OneHotEncoder

  首先导入必要的模块。

import pandas as pd
from sklearn.preprocessing import OneHotEncoder

  其中,OneHotEncoder是我们实现独热编码的关键模块。

  接下来,导入并显示数据前五行。

test_data_1=pd.read_csv('G:/CropYield/03_DL/00_Data/onehot_test.csv',names=['EVI0610','EVI0626','SoilType'],header=0)
test_data_1.head(5)

  关于这里导入数据代码的解释,大家可以查看多变量两两相互关系联合分布图的Python绘制Python TensorFlow深度学习回归代码:DNNRegressor这两篇文章,这里就不再赘述啦~

  数据前五行展示如下图。其中,前两列'EVI0610''EVI0626'为数值型连续变量,而'SoilType'为数值型类别变量。我们要做的,也就是将第三列'SoilType'进行独热编码。

  接下来,进行独热编码的配置。

ohe=OneHotEncoder(handle_unknown='ignore')
ohe.fit(test_data_1)

  在这里,第一行是对独热编码的配置,第二行则是对我们刚刚导入的数据进行独热编码处理。得到一个独热编码配置的输出结果。

  接下来,看看独热编码处理后,将我们的数据分成了哪些类别。

ohe.categories_

  得到结果如下图。

  可以发现,一共有三个array,为什么呢?仔细看可以发现,独热编码是将我们导入的三列数据全部都当作类别变量来处理了。之所以会这样,是因为我们在一开始没有表明哪一列是类别变量,需要进行独热编码;而哪一列不是类别变量,从而不需要进行独热编码。

  那么,我们如何实现上述需求,告诉程序我们要对哪一行进行独热编码呢?在老版本的sklearn中,我们可以借助categorical_features=[x]参数来实现这一功能,但是新版本sklearn取消了这一参数。那么此时,一方面,我们可以借助ColumnTransformer来实现这一过程,另一方面,我们可以直接对需要进行转换的列加以处理。后者相对较为容易理解,因此本文对后者进行讲解。

  我们将test_data_1中的'SoilType'列作为索引,从而仅仅对该列数据加以独热编码。

ohe_column=pd.DataFrame(ohe.fit_transform(test_data_1[['SoilType']]).toarray())
ohe_column.head(5)

  其中,[['SoilType']]表示仅仅对这一列进行处理。得到结果如下图。

  可以看到,原来的'SoilType'列现在成为了63列的编码列,那么这样的话,说明我们原先的'SoilType'应该一共是有63个不同的数值。是不是这个样子呢?我们来检查一下。

count=pd.DataFrame(test_data_1['SoilType'].value_counts())
print(count)

  得到结果如下。

  好的,没有问题:可以看到此结果共有63行,也就是'SoilType'列原本是有63个不同的值的,证明我们的独热编码没有出错。

  此时看一下我们的test_data_1数据目前长什么样子。

test_data_1.head(5)

  是的,我们仅仅对'SoilType'列做了处理,没有影响到整个初始数据。那么先将原本的'SoilType'列剔除掉。

test_data_1=test_data_1.drop(['SoilType'],axis=1)
test_data_1.head(5)

  再将经过独热编码处理后的63列加上。

test_data_1.join(ohe_column)

  大功告成!

  但是这里还有一个问题,我们经过独热编码所得的列名称是以数字来命名的,非常不方便。因此,有没有什么办法可以在独热编码进行的同时,自动对新生成的列加以重命名呢?

2 pd.get_dummies

  pd.get_dummies是一个最好的办法!其具体用法与上述OneHotEncoder类似,因此具体过程就不再赘述啦,大家看代码就可以明白。

  首先还是导入与上述内容中一致的初始数据。

test_data_2=pd.read_csv('G:/CropYield/03_DL/00_Data/onehot_test.csv',names=['EVI0610','EVI0626','SoilType'],header=0)
test_data_2.head(5)

  进行独热编码并看看结果。

test_data_2_ohe=pd.get_dummies(test_data_2,columns=['SoilType'])
test_data_2_ohe.head(5)

  最终结果中,列名称可以说是非常醒目,同时,共有65列数据,自动删除了原本的'SoilType'列,实现了“独热编码”“新列重命名”与“原始列删除”,可谓一举三得,简直是太方便啦~

Python实现类别变量的独热编码(One-hot Encoding)的更多相关文章

  1. 【转】数据预处理之独热编码(One-Hot Encoding)

    原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. ...

  2. 数据预处理:独热编码(One-Hot Encoding)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  3. 数据预处理:独热编码(One-Hot Encoding)和 LabelEncoder标签编码

    一.问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 离散特征的编码分为两种情况: 1.离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one- ...

  4. 数据预处理之独热编码(One-Hot Encoding)(转载)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  5. 机器学习实战:数据预处理之独热编码(One-Hot Encoding)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  6. 机器学习 数据预处理之独热编码(One-Hot Encoding)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  7. 数据预处理之独热编码(One-Hot Encoding)

    问题的由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑以下三个特征: ["male","female"] ["from ...

  8. 虚拟变量和独热编码的区别(Difference of Dummy Variable & One Hot Encoding)

    在<定量变量和定性变量的转换(Transform of Quantitative & Qualitative Variables)>一文中,我们可以看到虚拟变量(Dummy Var ...

  9. OneHotEncoder独热编码和 LabelEncoder标签编码

    学习sklearn和kagggle时遇到的问题,什么是独热编码?为什么要用独热编码?什么情况下可以用独热编码?以及和其他几种编码方式的区别. 首先了解机器学习中的特征类别:连续型特征和离散型特征 拿到 ...

  10. 机器学习:数据预处理之独热编码(One-Hot)

    前言 ———————————————————————————————————————— 在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等.这些特征值并不是连续的 ...

随机推荐

  1. Python-OpenCV的安装及学习资料

    Conda环境安装 OpenCV pip install opencv-python opencv-contrib-python -i https://mirrors.aliyun.com/pypi/ ...

  2. vulnhub靶场之EVILBOX: ONE

    准备: 攻击机:虚拟机kali.本机win10. 靶机:EVILBOX: ONE,下载地址:https://download.vulnhub.com/evilbox/EvilBox---One.ova ...

  3. jQuery 十三中选择器总结

    <body style="overflow: scroll;"> <h1>我的测试</h1> <div id="111" ...

  4. 【Hive】概念、安装、数据类型、DDL、DML操作、查询操作、函数、压缩存储、分区分桶、实战Top-N、调优(fetch抓取)、执行计划

    一.概念 1.介绍 基于Hadoop的数据仓库工具,将结构化数据映射为一张表,可以通过类SQL方式查询 本质:将HQL转换成MapReduce程序 Hive中具有HQL对应的MapReduce模板 存 ...

  5. 关于Mybatis-Plus中update()、updateById()方法的使用及null值的判断

    使用场景说明: 在 Mybatis-Plus 的使用过程中,经常会遇对数据库更新的情况 更新常用方法:update().updateById() 问题:经常会遇见对 null 值的处理,对传入的实体参 ...

  6. 嵌入式Linux Qt移植详细过程

    嵌入式Linux下的Qt移植详细过程 开发说明 前段时间需要用开发板写一个下位机程序,是基于Linux系统,就想着用Qt来写,于是上网找教程看如何移植到开发板上.由于我不熟悉嵌入式Linux,加上网上 ...

  7. docker registry(私库)搭建,使用,WEB可视化管理部署

    Docker Registry 是Docker官方一个镜像,可以用来储存和分发Docker镜像.目前比较流行的两个镜像私库是Docker Registry ,HarBor 其中HarBor最合适企业级 ...

  8. 百倍加速IO读写!快使用Parquet和Feather格式!⛵

    作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 本文地址:https://www.showmeai.tech/artic ...

  9. 万字长文详解 YOLOv1-v5 系列模型

    一,YOLOv1 Abstract 1. Introduction 2. Unified Detectron 2.1. Network Design 2.2 Training 2.4. Inferen ...

  10. [OpenCV实战]13 OpenCV中使用Mask R-CNN进行对象检测和实例分割

    目录 1 背景介绍 1.1 什么是图像分割和实例分割 1.2 Mask-RCNN原理 2 Mask-RCNN在OpenCV中的使用 2.1 模型下载 2.2 模型初始化 2.3 模型加载 2.4 输出 ...