前言

CanvasRenderingContext2D 没有提供绘制多边形的函数,所以只能由我们自己来实现绘制多边形的函数。以六边形为基础,需要用到三角函数:sin 和 cos。

点 A 坐标

(一)连接必要的辅助线:①连接点 A 和点 O;②从点 A 往下作一条垂直线;③连接点 A1 和点 O。(二)已知的量:①AO 实际就是圆 O 的半径。点 A 坐标的求解步骤:

  1. 求 ∠AOB;
  2. 求 OB 的长;
  3. 求 AB 的长;
  4. X 轴上的坐标:O 的 X 轴 + OB 的长度;
  5. Y 轴上的坐标:O 的 Y 轴 - AB 的长度;

求 A 点的坐标就必须要知道 OB 和 AB。

求 OB 的长

领边比斜边用 COS 函数,那么 OB 的长就是:

\[cos∠AOB = \frac{OB}{AO}
\]

求 AB 的长

对边比斜边用 SIN 函数,那么 AB 的长就是:

\[sin∠AOB = \frac{AB}{AO}
\]

求 ∠AOB

求 OB 和 AB 就必须要知道 ∠AOB。观察可知,∠AOB 的度数是360° / 6 = 60°

代码实现

let circX = 100, circY = 100, // 圆心坐标
let sides = 6, angleAOB = (Math.PI * 2) / sides; // ∠AOB let sideOB = Math.cos(angleAOB) * radius, sideAB = Math.sin(angleAOB) * radius; let aX = circX + sideOB, // 点 A 的 x 坐标
let aY = circY - sideAB; // 点 A 的 y 坐标

所以最终求得点 A 的坐标:(140, 30.717967697244916)

点 F 坐标

点 F 不能直接构成一个三角形,所以度数是 0°。sin0° = 0cos0°= 1

let circX = 100, circY = 100, // 圆心坐标
let sides = 6, angle = 0; let adjacentSide = Math.cos(angle) * radius, beveledSide = Math.sin(angle) * radius; let aX = circX + adjacentSide, // 点 F 的 x 坐标
let aY = circY - beveledSide; // 点 F 的 y 坐标

所以最终求得点 F 的坐标:(180, 100)

求所有点坐标

通过上面两个坐标的求解过程可知,只有三角形的度数在增加,从点 F 顺时针开始,每一个角是自身的角度再加 60°。

let radius = 80, sides = 6, circX = 100, circY = 100;
let angle = (Math.PI * 2) / sides, accumulator = 0; for ( let i = 0; i < sides; i++ ) {
let adjacentSide = Math.cos(accumulator) * radius;
let beveledSide = Math.sin(accumulator) * radius;
let aX = circX + adjacentSide;
let aY = circY - beveledSide;
ctx.lineTo(aX, aY);
accumulator += angle;
}

6 个点坐标的结果依次是:

封装成函数

只需提供多边形有多少面、多边形的圆心半径:

function drawPolygonPath(sides, radius, circX, circY, ctx) {
let angle = (Math.PI * 2) / sides, accumulator = 0; ctx.beginPath();
for ( let i = 0; i < sides; i++ ) {
let adjacentSide = Math.cos(accumulator) * radius;
let beveledSide = Math.sin(accumulator) * radius;
let aX = circX + adjacentSide;
let aY = circY - beveledSide;
ctx.lineTo(aX, aY);
accumulator += angle;
}
ctx.closePath();
ctx.stroke();
}

ctx.lineTo(aX, aY) 确定多边形所有的点,在循环结束之后关闭路径,再调用ctx.stroke() 函数,完成多边形的绘制。

let canvas = document.getElementById("canvas");
let ctx = canvas.getContext("2d"); drawPolygonPath(6, 80, 100, 100, ctx);

Canvas 线性图形(五):多边形的更多相关文章

  1. Canvas 线性图形(一):路径

    路径的概念 路径是从起始点到结束点之间的连线.个人认为,二维画布中分为线性图形和非线性图形,线性图形包括矩形.直线.曲线.圆形等各种几何图形:非线性图形包括图象.文本.像素.线性图形中又分为路径和非路 ...

  2. Canvas 线性图形(三):曲线

    前言 画曲线要用到二次贝塞尔曲线或三次贝塞尔曲线.贝塞尔曲线是计算机图形学中相当重要的参数曲线,在一些比较成熟的位图软件中也有贝塞尔曲线工具,如 PhotoShop. 二次贝塞尔曲线 二次贝塞尔曲线在 ...

  3. Canvas 线性图形(四):矩形

    函数 CanvasPath.rect(x, y, w, h) 参数名 类型 描述 x Number 矩形起始位置 y Number 矩形起始位置 w Number 矩形宽度 h Number 矩形高度 ...

  4. Canvas 线性图形(二):圆形

    函数 arc(x, y, radius, startAngle, endAngle, counterclockwise) 参数名 描述 x.y 圆心坐标轴 radius 圆的半径 startAngle ...

  5. HTML5—canvas绘制图形(1)

    1.canvas基础知识 canvas元素是HTML5中新增的一个重要的元素,专门用来绘制图形,不过canvas本身不具备画图的能力,在页面中放置了canvas元素,就相当于在页面中放置了一块矩形的“ ...

  6. canvas基础—图形变换

    1.canvas转换方法 1.1canvas转换方法 二.canvas实现图形的中心点旋转 step1:获取canva元素并指定canvas的绘图环境 var canvas=document.getE ...

  7. HTML5 Canvas核心技术:图形、动画与游戏开发 PDF扫描版​

    HTML5 Canvas核心技术:图形.动画与游戏开发 内容简介: <HTML5 Canvas核心技术:图形.动画与游戏开发>中,畅销书作家David Geary(基瑞)先生以实用的范例程 ...

  8. html5 Canvas绘制图形入门详解

    html5,这个应该就不需要多作介绍了,只要是开发人员应该都不会陌生.html5是「新兴」的网页技术标准,目前,除IE8及其以下版本的IE浏览器之外,几乎所有主流浏览器(FireFox.Chrome. ...

  9. canvas 绘制图形

    canvas 绘制图形: 注意: canvas 的宽高设置在行内,否则会使画布(canvas)产生扭曲,绘图变形: <!DOCTYPE html> <html lang=" ...

随机推荐

  1. 使用React实现一个TodoList案例

    1.效果图: 2.项目源码 3.源码 TodoList.js import React, { Component, Fragment } from 'react'; import TodoItem f ...

  2. 微信小程序HTTP接口请求封装

    1.方法封装(新建文件夹util,工具文件,在文件夹下创建request.js文件,用于对方法封装)request.js: var app = getApp(); //项目URL相同部分,减轻代码量, ...

  3. findmnt、lsblk、mount 命令查看磁盘、目录挂载、挂载点以及文件系统格式等情况

    findmnt 展示出了目标挂载点( TARGET ).源设备( SOURCE ).文件系统类型( FSTYPE )以及相关的挂载选项( OPTIONS ),例如文件系统是否是可读可写或者只读的.根( ...

  4. Rb(redis blaster),一个为 redis 实现 non-replicated 分片的 python 库

    Rb,redis blaster,是一个为 redis 实现非复制分片(non-replicated sharding)的库.它在 python redis 之上实现了一个自定义路由系统,允许您自动定 ...

  5. Istio实践(1)-环境搭建及应用部署

    1. Istio简介 Istio是最初由IBM,Google和Lyft开发的服务网格的开源实现.它可以透明地分层到分布式应用程序上,并提供服务网格的所有优点,例如流量管理,安全性和可观察性. 它旨在与 ...

  6. 帝国CMS 后台登录空白

    编辑/e/config/config.php中 $ecms_config['esafe']['ckfromurl']=0; //是否启用来源地址验证,0为不验证,1为全部验证,2为后台验证,3为前台验 ...

  7. 日志、第三方模块(openpyxl模块)

    目录 1.日志模块 2.第三方模块 内容 日志模块 1.日志模块的主要组成部分 1.logger对象:产生日志 无包装的产品 import logging logger = logging.getLo ...

  8. C++五子棋(二)——游戏界面与棋子渲染

    准备 我们首先要在程序中定义一个名为drawPNG的函数,用于输出png格式图片并使背景透明 引入头文件(需要提前安装EasyX) #include <graphics.h> 定义函数 d ...

  9. Warmup小记

    什么是warmup 热身,在刚刚开始训练时以很小的学习率进行训练,使得网络熟悉数据,随着训练的进行学习率慢慢变大,到了一定程度,以设置的初始学习率进行训练,接着过了一些inter后,学习率再慢慢变小: ...

  10. Java学习day5

    API即应用程序编程接口,Java所包含的方法以及类很多,如果要使用他们就得了解这些的API如何使用,因为API多而复杂,我们可以通过帮助文档查询 与c/c++类似,Java通过Scanner类就可以 ...