diffusers库的目标是:

  • 将扩散模型(diffusion models)集中到一个单一且长期维护的项目中
  • 以公众可访问的方式复现高影响力的机器学习系统,如DALLE、Imagen等
  • 让开发人员可以很容易地使用API进行模型训练或者使用现有模型进行推理

diffusers的核心分成三个组件:

  • Pipelines: 高层类,以一种用户友好的方式,基于流行的扩散模型快速生成样本
  • Models:训练新扩散模型的流行架构,如UNet
  • Schedulers:推理场景下基于噪声生成图像或训练场景下基于噪声生成带噪图像的各种技术
diffusers的安装
pip install diffusers
先看推理

导入Pipeline,from_pretrained()加载模型,可以是本地模型,或从the Hugging Face Hub自动下载。

from diffusers import StableDiffusionPipeline

image_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
# 加载本地模型:
# image_pipe = StableDiffusionPipeline.from_pretrained("./models/Stablediffusion/stable-diffusion-v1-4")
image_pipe.to("cuda") prompt = "a photograph of an astronaut riding a horse"
pipe_out = image_pipe(prompt) image = pipe_out.images[0]
# you can save the image with
# image.save(f"astronaut_rides_horse.png")

我们查看下image_pipe的内容:

StableDiffusionPipeline {
"_class_name": "StableDiffusionPipeline",
"_diffusers_version": "0.10.2",
"feature_extractor": [
"transformers",
"CLIPFeatureExtractor"
],
"requires_safety_checker": true,
"safety_checker": [
"stable_diffusion",
"StableDiffusionSafetyChecker"
],
"scheduler": [
"diffusers",
"PNDMScheduler"
],
"text_encoder": [
"transformers",
"CLIPTextModel"
],
"tokenizer": [
"transformers",
"CLIPTokenizer"
],
"unet": [
"diffusers",
"UNet2DConditionModel"
],
"vae": [
"diffusers",
"AutoencoderKL"
]
}

查看Images的结构:

StableDiffusionPipelineOutput(
images=[<PIL.Image.Image image mode=RGB size=512x512 at 0x1A14BDD7730>],
nsfw_content_detected=[False])

由此,可以看到pipe_out的包含两部分,第一部分就是生成的图片列表,如果只有一张图片,则pipe_out.images[0]即可取出目标图像。

如果我们要一次生成多张图像呢?只需要修改prompt的list长度即可,代码如下。

from diffusers import StableDiffusionPipeline

image_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")

image_pipe.to("cuda")
prompt = ["a photograph of an astronaut riding a horse"] * 3
out_images = image_pipe(prompt).images
for i, out_image in enumerate(out_images):
out_image.save("astronaut_rides_horse" + str(i) + ".png")

在使用image_pipe生成图像时,默认是float32精度的,若本地现在不足,可能会报Out of memory的错误,此时,可以通过加载float16精度的模型来解决。

Note: If you are limited by GPU memory and have less than 10GB of GPU RAM available, please make sure to load the StableDiffusionPipeline in float16 precision instead of the default float32 precision as done above.

You can do so by loading the weights from the fp16 branch and by telling diffusers to expect the weights to be in float16 precision:

image_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16)

对于每个PipeLine都有一些特定的配置,如StableDiffusionPipeline除了必要的prompt参数,还可以配置如下参数:

  • num_inference_steps: int = 50
  • guidance_scale: float = 7.5
  • generator: Optional[torch.Generator] = None
  • 等等

示例:如果你想要每次得到的结果均一致,可以设置每次的种子都一样

generator = torch.Generator("cuda").manual_seed(1024)
prompt = ["a photograph of an astronaut riding a horse"] * 3
out_images = image_pipe(prompt, generator=generator).images
再看训练

Diffusers库的初识及使用的更多相关文章

  1. ECharts(Enterprise Charts 商业产品图表库)初识

    一.简介 大数据时代,重新定义图表的时候到了,所以随之ECharts就随之出现了. ECharts(Enterprise Charts 商业产品图表库) 是基于Canvas的,纯Javascript ...

  2. 2_认识STM32库

    2_认识STM32库 STM32库是由ST公司针对STM32提供的函数接口API,开发者可以调用这些函数接口来配置STM32的寄存器,使得开发人员得以脱离最底层的寄存器操作,开发快速. 库是架设在寄存 ...

  3. python之路--MySQL数据库初识

    一 . MySQL安装 # 下载MySQL地址 https://dev.mysql.com/downloads # 要选稳定的,不要选最新的,稳定的就是半年以上没有出现过bug 现在5.6.43为绝大 ...

  4. python--MySQL数据库初识

    一 . MySQL安装 # 下载MySQL地址 https://dev.mysql.com/downloads # 要选稳定的,不要选最新的,稳定的就是半年以上没有出现过bug 现在5.6.43为绝大 ...

  5. 浅谈 jQuery 核心架构设计

    jQuery对于大家而言并不陌生,因此关于它是什么以及它的作用,在这里我就不多言了,而本篇文章的目的是想通过对源码简单的分析来讨论 jQuery 的核心架构设计,以及jQuery 是如何利用javas ...

  6. 浅析 jQuery 内部架构设计

    jQuery 对于大家而言并不陌生,因此关于它是什么以及它的作用,在这里我就不多言了,而本篇文章的目的是想通过对源码简单的分析来讨论 jQuery 的内部架构设计,以及 jQuery 是如何利用Jav ...

  7. boost的下载和安装(windows版)

    1 简介 boost是一个准C++标准库,相当于STL的延续和扩充,它的设计理念和STL比较接近,都是利用泛型让复用达到最大化. boost主要包含以下几个大类: 字符串及文本处理.容器.迭代器(it ...

  8. 第9章 初识STM32固件库

    第9章     初识STM32固件库 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.youku.com/fire ...

  9. 第9章 初识STM32固件库—零死角玩转STM32-F429系列

    第9章     初识STM32固件库 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.youku.com/fire ...

  10. 第9章 初识HAL固件库

    本章参考资料:<STM32F76xxx参考手册>.<STM32F7xx规格书>.<Cortex-M3权威指南>, STM32 HAL库帮助文档:<STM32F ...

随机推荐

  1. SpringCloud(十一)- 秒杀 抢购

    1.流程图 1.1 数据预热 1.2 抢购 1.3 生成订单 (发送订单消息) 1.4 订单入库 (监听 消费订单消息) 1.5 查看订单状态 1.6 支付 (获取支付链接 ) 1.7 支付成功 微信 ...

  2. 写一个frida通杀脚本

    1. 前言 过年对我来说和平常没什么区别,该干什么干什么. 之前没接触过 frida 这个工具,前几天用了一些时间学习了一下,相比于 xposed hook 框架,frida 相对于调试方面真的很方便 ...

  3. CheckBox 单选实现及取值

    <input name="ck" type="checkbox" value="1"/><span>按计划进行< ...

  4. python-封装、继承、多态

    封装 面向对象编程有三大特性:封装.继承.多态,其中最重要的一个特性就是封装.封装指的就是把数据与功能都整合到一起,针对封装到对象或者类中的属性,我们还可以严格控制对它们的访问,分两步实现:隐藏与开放 ...

  5. 【基础语法规范】【函数式编程、字符串分割】BC6:输出输入的第二个整数

    思路:数组or字符串split分割 一.Scala 方法1:Int数组[不行] import scala.io.StdIn object Main{ def main(args:Array[Strin ...

  6. 使用python脚本传递参数:(三种方式可收藏)

    背景:使用python脚本传递参数在实际工作过程中还是比较常用,以下提供了好几种的实现方式: 一.使用sys.argv的数组传入说明:使用sys.argv必须按照先后的顺序传入对应的参数:sys.ar ...

  7. 爬了10000张NASA关于火星探索的图片,我发现了一个秘密

    前言 最近,我使用爬虫技术,爬取了美国航空航天局,也就是你电影里经常见到的 NASA, 火星探索的相关图片,有 10000 张吧. 嗯嗯,小事情,小事情. 完事儿之后,有点小激动,于是就有了这篇文章, ...

  8. Spring 6 源码编译和高效阅读源码技巧分享

    一. 前言 Spring Boot 3 RELEASE版本于 2022年11月24日 正式发布,相信已经有不少同学开始准备新版本的学习了,不过目前还不建议在实际项目中做升级,毕竟还有很多框架和中间件没 ...

  9. Python3.7.3环境搭建

    Python3.7.3安装(Win10) 到2019年初,Python3已经更新到了Python3.7.3,Python有两个大版本Python2和Python3,Python3是现在和未来的主流. ...

  10. vivo 云原生容器探索和落地实践

    作者:vivo 互联网容器团队- Pan Liangbiao 本文根据潘良彪老师在"2022 vivo开发者大会"现场演讲内容整理而成.公众号回复[2022 VDC]获取互联网技术 ...