通常,Linux容器的网络是被隔离在它自己的Network Namespace中,其中就包括:网卡(Network Interface)、回环设备(Loopback Device)、路由表(Routing Table)和iptables规则。对于一个进程来说,这些要素,就构成了它发起和响应网络请求的基本环境。

前文说到容器网络对Linux虚拟化技术的依赖,这一篇章我们将一探究竟,看看Docker究竟是怎么做的。

管中窥豹

我们在执行 docker run -d --name xxx   之后,进入容器内部:

## docker ps 可查看所有docker
## 进入容器
docker exec -it 228ae947b20e /bin/bash

并执行 ifconfig :

$ ifconfig
eth0 Link encap:Ethernet HWaddr 22:A4:C8:79:DD:1A
inet addr:192.168.65.28 Bcast:0.0.0.0 Mask:255.255.255.255
UP BROADCAST RUNNING MULTICAST MTU:1440 Metric:1
RX packets:2231528 errors:0 dropped:0 overruns:0 frame:0
TX packets:3340914 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:249385222 (237.8 MiB) TX bytes:590701793 (563.3 MiB) lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

我们看到一张叫eth0的网卡,它正是一个Veth Pair设备在容器的这一端。

我们再通过 route 查看该容器的路由表:

$ route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default 169.254.1.1 0.0.0.0 UG 0 0 0 eth0
169.254.1.1 * 255.255.255.255 UH 0 0 0 eth0

我们可以看到这个eth0是这个容器的默认路由设备。我们也可以通过第二条路由规则,看到所有对 169.254.1.1/16 网段的请求都会交由eth0来处理。

而Veth Pair 设备的另一端,则在宿主机上,我们同样也可以通过查看宿主机的网络设备来查看它:

$ ifconfig
......
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 172.16.241.192 netmask 255.255.240.0 broadcast 172.16.255.255
ether 00:16:3e:0a:f3:75 txqueuelen 1000 (Ethernet)
RX packets 3168620550 bytes 727592674740 (677.6 GiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 2937180637 bytes 8661914052727 (7.8 TiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
......
docker0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
inet 172.17.0.1 netmask 255.255.0.0 broadcast 172.17.255.255
ether 02:42:16:58:92:43 txqueuelen 0 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
......
vethd08be47: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
ether 16:37:8d:fe:36:eb txqueuelen 0 (Ethernet)
RX packets 193 bytes 22658 (22.1 KiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 134 bytes 23655 (23.1 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
......

在宿主机上,容器对应的Veth Pair设备是一张虚拟网卡,我们再用 brctl show 命令查看网桥:

$ brctl show
bridge name bridge id STP enabled interfaces
docker0 8000.0242afb1a841 no vethd08be47

可以清楚的看到Veth Pair的一端 vethd08be47 就插在 docker0 上。

我现在执行docker run 启动两个容器,就会发现docker0上插入两个容器的 Veth Pair的一端。如果我们在一个容器内部互相ping另外一个容器的IP地址,是不是也能ping通?

$ brctl show
bridge name bridge id STP enabled interfaces
docker0 8000.0242afb1a841 no veth26cf2cc
veth8762ad2

容器1:

$ docker exec -it f8014a4d34d0 /bin/bash
$ ifconfig
eth0 Link encap:Ethernet HWaddr 02:42:AC:11:00:03
inet addr:172.17.0.3 Bcast:172.17.255.255 Mask:255.255.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:76 errors:0 dropped:0 overruns:0 frame:0
TX packets:106 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:16481 (16.0 KiB) TX bytes:14711 (14.3 KiB) lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:48 errors:0 dropped:0 overruns:0 frame:0
TX packets:48 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:2400 (2.3 KiB) TX bytes:2400 (2.3 KiB)
$ route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default 172.17.0.1 0.0.0.0 UG 0 0 0 eth0
172.17.0.0 * 255.255.0.0 U 0 0 0 eth0

容器2:

$ docker exec -it 9a6f38076c04 /bin/bash
$ ifconfig
eth0 Link encap:Ethernet HWaddr 02:42:AC:11:00:02
inet addr:172.17.0.2 Bcast:172.17.255.255 Mask:255.255.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:133 errors:0 dropped:0 overruns:0 frame:0
TX packets:193 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:23423 (22.8 KiB) TX bytes:22624 (22.0 KiB) lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:198 errors:0 dropped:0 overruns:0 frame:0
TX packets:198 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:9900 (9.6 KiB) TX bytes:9900 (9.6 KiB)
$ route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default 172.17.0.1 0.0.0.0 UG 0 0 0 eth0
172.17.0.0 * 255.255.0.0 U 0 0 0 eth0

从一个容器ping另外一个容器:

# -> 容器1内部 ping 容器2
$ ping 172.17.0.3
PING 172.17.0.3 (172.17.0.3): 56 data bytes
64 bytes from 172.17.0.3: seq=0 ttl=64 time=0.142 ms
64 bytes from 172.17.0.3: seq=1 ttl=64 time=0.096 ms
64 bytes from 172.17.0.3: seq=2 ttl=64 time=0.089 ms

我们看到,在一个容器内部ping另外一个容器的ip,是可以ping通的。也就意味着,这两个容器是可以互相通信的。

容器通信

我们不妨结合前文时所说的,理解下为什么一个容器能访问另一个容器?先简单看如一幅图:

当在容器1里访问容器2的地址,这个时候目的IP地址会匹配到容器1的第二条路由规则,这条路由规则的Gateway是0.0.0.0,意味着这是一条直连规则,也就是说凡是匹配到这个路由规则的请求,会直接通过eth0网卡,通过二层网络发往目的主机。而要通过二层网络到达容器2,就需要127.17.0.3对应的MAC地址。所以,容器1的网络协议栈就需要通过eth0网卡来发送一个ARP广播,通过IP找到MAC地址。所谓ARP(Address Resolution Protocol),就是通过三层IP地址找到二层的MAC地址的协议。这里说到的eth0,就是Veth Pair的一端,另一端则插在了宿主机的docker0网桥上。eth0这样的虚拟网卡插在docker0上,也就意味着eth0变成docker0网桥的“从设备”。从设备会降级成docker0设备的端口,而调用网络协议栈处理数据包的资格全部交给docker0网桥。

所以,在收到ARP请求之后,docker0就会扮演二层交换机的角色,把ARP广播发给其它插在docker0网桥的虚拟网卡上,这样,127.17.0.3就会收到这个广播,并把其MAC地址返回给容器1。有了这个MAC地址,容器1的eth0的网卡就可以把数据包发送出去。

这个数据包会经过Veth Pair在宿主机的另一端veth26cf2cc,直接交给docker0。docker0转发的过程,就是继续扮演二层交换机,docker0根据数据包的目标MAC地址,在CAM表查到对应的端口为veth8762ad2,然后把数据包发往这个端口。而这个端口,就是容器2的Veth Pair在宿主机的另一端,这样,数据包就进入了容器2的Network Namespace,最终容器2将响应(Pong)返回给容器1。在真实的数据传递中,Linux内核Netfilter/Iptables也会参与其中,这里不再赘述。

CAM就是交换机通过MAC地址学习维护端口和MAC地址的对应表

这里介绍的容器间的通信方式就是docker中最常见的bridge模式,当然此外还有host模式、container模式、none模式等,对其它模式有兴趣的可以去阅读相关资料。

跨主通信

好了,这里不禁问个问题,到目前为止只是单主机内部的容器间通信,那跨主机网络呢?

在Docker默认配置下,一台宿主机的docker0网桥是无法和其它宿主机连通的,它们之间没有任何关联,所以这些网桥上的容器,自然就没办法多主机之间互相通信。但是无论怎么变化,道理都是一样的,如果我们创建一个公共的网桥,是不是集群中所有容器都可以通过这个公共网桥去连接?

当然在正常的情况下,节点与节点的通信往往可以通过NAT的方式,但是,这个在互联网发展的今天,在容器化环境下未必适用。例如在向注册中心注册实例的时候,肯定会携带IP,在正常物理机内的应用当然没有问题,但是容器化环境却未必,容器内的IP很可能就是上文所说的172.17.0.2,多个节点都会存在这个IP,大概率这个IP是冲突的。如果我们想避免这个问题,就会携带宿主机的IP和映射的端口去注册。但是这又带来一个问题,即容器内的应用去意识到这是一个容器,而非物理机,当在容器内,应用需要去拿容器所在的物理机的IP,当在容器外,应用需要去拿当前物理机的IP。显然,这并不是一个很好的设计,这需要应用去配合配置。所以,基于此,我们肯定要寻找其他的容器网络解决方案。

在上图这种容器网络中,我们需要在我们已有的主机网络上,通过软件构建一个覆盖在多个主机之上,且能把所有容器连通的虚拟网络。这种就是Overlay Network(覆盖网络)。

关于这些具体的网络解决方案,例如Flannel、Calico等,我会在后续篇幅继续陈述。

Docker容器网络-实现篇的更多相关文章

  1. Docker容器网络-基础篇

    开源Linux 一个执着于技术的公众号 Docker的技术依赖于Linux内核的虚拟化技术的发展,Docker使用到的网络技术有Network Namespace.Veth设备对.Iptables/N ...

  2. Docker容器网络篇

    Docker容器网络篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Docker的网络模型概述 如上图所示,Docker有四种网络模型: 封闭式网络(Closed conta ...

  3. 【转】理解Docker容器网络之Linux Network Namespace

    原文:理解Docker容器网络之Linux Network Namespace 由于2016年年中调换工作的原因,对容器网络的研究中断过一段时间.随着当前项目对Kubernetes应用的深入,我感觉之 ...

  4. docker容器网络bridge

    我们知道docker利用linux内核特性namespace实现了网络的隔离,让每个容器都处于自己的小世界里面,当这个小世界需要与外界(宿主机或其他容器)通信的时候docker的网络就发挥作用了,这篇 ...

  5. 两台主机间docker容器网络互通

    服务器1: 网络172.30.0.0/16 服务器2: 网络172.31.0.0/16 服务器1和服务器2上的docker容器网络之间是无法互通的,如果需要互通,需要做以下配置: 服务器1上执行: i ...

  6. Docker容器网络配置

    Docker容器网络配置 1.Linux内核实现名称空间的创建 1.1 ip netns命令 可以借助ip netns命令来完成对 Network Namespace 的各种操作.ip netns命令 ...

  7. 5、Docker容器网络

    使用Linux进行IP层网络管理的指     http://linux-ip.net/html/ # yum install iproute http://linux-ip.net/html/tool ...

  8. docker容器网络—单主机容器网络

    当我们在单台物理机或虚拟机中运行多个docker容器应用时,这些容器之间是如何进行通信的呢,或者外界是如何访问这些容器的? 这里就涉及了单机容器网络相关的知识.docker 安装后默认 情况下会在宿主 ...

  9. docker容器网络

    1.我们在使用docker run创建Docker容器时,可以用--net选项指定容器的网络模式,Docker有以下4种网络模式: · host模式,使用--net=host指定 · containe ...

随机推荐

  1. 《Head First 设计模式》:装饰者模式

    正文 一.定义 装饰者模式动态地将责任(功能)附加到对象上.若要扩展功能,装饰者提供了比继承更有弹性的替代方案. 要点: 装饰者和被装饰者有相同的超类型. 可以用一个或多个装饰者包装一个对象. 既然装 ...

  2. Facebook没有测试工程师,如何进行质量控制的?

    Facebook从04年的哈佛校园的学生项目在短短的7-8年的时间中快速增长为拥有10亿用户的世界上最大的社交网络,又一次见证了互联网创业成功的奇迹.同时它的产品研发流程也成为了众多互联网产品公司的追 ...

  3. Python Ethical Hacking - VULNERABILITY SCANNER(7)

    VULNERABILITY_SCANNER How to discover a vulnerability in a web application? 1. Go into every possibl ...

  4. Python Ethical Hacking - WEB PENETRATION TESTING(1)

    WHAT IS A WEBSITE Computer with OS and some servers. Apache, MySQL ...etc. Cotains web application. ...

  5. 集训作业 洛谷P3913 车的攻击

    这个题一开始被我想复杂了,但总体差不多. 脑子清醒后我直接看他占领了几条长,几条宽,比如一个长3宽3的地图. 被占领了一条宽,就可以看成一个长3宽2的地图.这个长3宽2的地图就是出去可以被攻击的点剩下 ...

  6. 轻松应对并发问题,简易的火车票售票系统,Newbe.Claptrap 框架用例,第一步 —— 业务分析

    Newbe.Claptrap 框架非常适合于解决具有并发问题的业务系统.火车票售票系统,就是一个非常典型的场景用例. 本系列我们将逐步从业务.代码.测试和部署多方面来介绍,如何使用 Newbe.Cla ...

  7. Python API 操作Hadoop hdfs详解

    1:安装 由于是windows环境(linux其实也一样),只要有pip或者setup_install安装起来都是很方便的 >pip install hdfs 2:Client——创建集群连接 ...

  8. Thymeleaf从入门到精通

    什么是Thymeleaf 大家好,我是bigsai,今天我们来学习Thymeleaf,如果你对Thymeleaf比较陌生也不要紧,它很容易学习与理解,并有着自己鲜明的特色. 开始之前,我们依旧问一个问 ...

  9. JFinal笔记

    目录 JFinalConfig 1. configConstant() 2. configRoute() 3. configEngine 4. configPlugin 5. configInterc ...

  10. Java Web(5)-Servlet详解(上)

    一.Servlet 1. 什么是Servlet Servlet 是 JavaEE 规范之一,规范就是接口 Servlet 就 JavaWeb 三大组件之一,三大组件分别是:Servlet 程序.Fil ...