再也不怕别人动电脑了!用Python实时监控
作者:美图博客
https://www.meitubk.com/zatan/386.html
前言
最近突然有个奇妙的想法,就是当我对着电脑屏幕的时候,电脑会先识别屏幕上的人脸是否是本人,如果识别是本人的话需要回答电脑说的暗语,答对了才会解锁并且有三次机会。如果都没答对就会发送邮件给我,通知有人在动我的电脑并上传该人头像。
过程
很多人学习python,不知道从何学起。
很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手。
很多已经做案例的人,却不知道如何去学习更加高深的知识。
那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!
QQ群:1097524789
环境是win10
代码我使用的是python3
所以在开始之前需要安装一些依赖包,请按顺序安装否者会报错
pip install cmake -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install dlib -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install face_recognition -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
接下来是构建识别人脸以及对比人脸的代码
import face_recognition
import cv2
import numpy as np
video_capture = cv2.VideoCapture(0)
my_image = face_recognition.load_image_file("my.jpg")
my_face_encoding = face_recognition.face_encodings(my_image)[0]
known_face_encodings = [
my_face_encoding
]
known_face_names = [
"Admin"
]
face_names = []
face_locations = []
face_encodings = []
process_this_frame = True
while True:
ret, frame = video_capture.read()
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
if process_this_frame:
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
left *= 4
right *= 4
bottom *= 4
font = cv2.FONT_HERSHEY_DUPLEX
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()
其中my.jpg
需要你自己拍摄上传,运行可以发现在你脸上会出现Admin
的框框,我去网上找了张图片类似这样子
打造电脑版人脸屏幕解锁神器
创建后会得到AppID、API Key、Secret Key记下来,然后开始写语音合成的代码。安装百度AI提供的依赖包
pip install baidu-aip -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install playsound -i https://pypi.tuna.tsinghua.edu.cn/simple
然后是简单的语音播放代码,运行下面代码可以听到萌妹子的声音
import sys
from aip import AipSpeech
from playsound import playsound
APP_ID = ''
API_KEY = ''
SECRET_KEY = ''
client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
result = client.synthesis('你好吖', 'zh', 1, {'vol': 5, 'per': 4, 'spd': 5, })
if not isinstance(result, dict):
with open('auido.mp3', 'wb') as file:
file.write(result)
filepath = eval(repr(sys.path[0]).replace('\\', '/')) + '//auido.mp3'
playsound(filepath)
有了上面的代码就完成了检测是否在电脑前(人脸识别)以及电脑念出暗语(语音合成)然后我们还需要回答暗号给电脑,所以还需要完成语音识别。
import wave
import pyaudio
from aip import AipSpeech
APP_ID = ''
API_KEY = ''
SECRET_KEY = ''
client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
CHUNK = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 8000
RECORD_SECONDS = 3
WAVE_OUTPUT_FILENAME = "output.wav"
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK)
print("* recording")
frames = []
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
data = stream.read(CHUNK)
frames.append(data)
print("* done recording")
stream.stop_stream()
stream.close()
p.terminate()
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(p.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames))
def get_file_content():
with open(WAVE_OUTPUT_FILENAME, 'rb') as fp:
return fp.read()
result = client.asr(get_file_content(), 'wav', 8000, {'dev_pid': 1537, })
print(result)
运行此代码之前需要安装pyaudio
依赖包,由于在win10系统上安装会报错所以可以通过如下方式安装。到这个链接 https://www.lfd.uci.edu/~gohlke/pythonlibs/#pyaudio 去下载对应的安装包然后安装即可。
打造电脑版人脸屏幕解锁神器
运行后我说了你好,可以看到识别出来了。那么我们的小模块功能就都做好了接下来就是如何去整合它们。可以发现在人脸识别代码中if matches[best_match_index]
这句判断代码就是判断是否为电脑主人,所以我们把这个判断语句当作main函数的入口。
if matches[best_match_index]:
# 在这里写识别到之后的功能
name = known_face_names[best_match_index]
那么识别到后我们应该让电脑发出询问暗号,也就是语音合成代码,然我们将它封装成一个函数,顺便重构下人脸识别的代码。
import cv2
import time
import numpy as np
import face_recognition
video_capture = cv2.VideoCapture(0)
my_image = face_recognition.load_image_file("my.jpg")
my_face_encoding = face_recognition.face_encodings(my_image)[0]
known_face_encodings = [
my_face_encoding
]
known_face_names = [
"Admin"
]
face_names = []
face_locations = []
face_encodings = []
process_this_frame = True
def speak(content):
import sys
from aip import AipSpeech
from playsound import playsound
APP_ID = ''
API_KEY = ''
SECRET_KEY = ''
client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
result = client.synthesis(content, 'zh', 1, {'vol': 5, 'per': 0, 'spd': 5, })
if not isinstance(result, dict):
with open('auido.mp3', 'wb') as file:
file.write(result)
filepath = eval(repr(sys.path[0]).replace('\\', '/')) + '//auido.mp3'
playsound(filepath)
try:
while True:
ret, frame = video_capture.read()
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
if process_this_frame:
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
speak("识别到人脸,开始询问暗号,请回答接下来我说的问题")
time.sleep(1)
speak("天王盖地虎")
error = 1 / 0
name = known_face_names[best_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
left *= 4
right *= 4
bottom *= 4
font = cv2.FONT_HERSHEY_DUPLEX
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
except Exception as e:
print(e)
finally:
video_capture.release()
cv2.destroyAllWindows()
这里有一点需要注意,由于playsound
播放音乐的时候会一直占用这个资源,所以播放下一段音乐的时候会报错,解决方法是修改~\Python37\Lib\site-packages
下的playsound.py
文件,找到如下代码
打造电脑版人脸屏幕解锁神器
在sleep
函数下面添加winCommand('close', alias)
这句代码,保存下就可以了。运行发现可以正常将两句话都说出来。那么说出来之后就要去监听了,我们还要打包一个函数。
def record():
import wave
import json
import pyaudio
from aip import AipSpeech
APP_ID = ''
API_KEY = ''
SECRET_KEY = ''
client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
CHUNK = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 8000
RECORD_SECONDS = 3
WAVE_OUTPUT_FILENAME = "output.wav"
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK)
print("* recording")
frames = []
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
data = stream.read(CHUNK)
frames.append(data)
print("* done recording")
stream.stop_stream()
stream.close()
p.terminate()
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(p.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames))
def get_file_content():
with open(WAVE_OUTPUT_FILENAME, 'rb') as fp:
return fp.read()
result = client.asr(get_file_content(), 'wav', 8000, {'dev_pid': 1537, })
result = json.loads(str(result).replace("'", '"'))
return result["result"][0]
将识别到人脸后的代码修改成如下
if matches[best_match_index]:
speak("识别到人脸,开始询问暗号,请回答接下来我说的问题")
time.sleep(1)
speak("天王盖地虎")
flag = False
for times in range(0, 3):
content = record()
if "小鸡炖蘑菇" in content:
speak("暗号通过")
flag = True
break
else:
speak("暗号不通过,再试一次")
if flag:
print("解锁")
else:
print("发送邮件并将坏人人脸图片上传!")
error = 1 / 0
name = known_face_names[best_match_index]
运行看看效果,回答电脑小鸡炖蘑菇
,电脑回答暗号通过。这样功能就基本上完成了。
打造电脑版人脸屏幕解锁神器
结语
至于发送邮件的功能和锁屏解锁的功能我就不一一去实现了,我想这应该难不倒在座的各位吧。锁屏功能可以HOOK让键盘时间无效化,然后用窗口再覆盖整个桌面即可,至于邮箱发送网上文章很多的。
再也不怕别人动电脑了!用Python实时监控的更多相关文章
- python 实时监控剪切板,并替换其中的部分内容,重新写入剪切板
#实时监控剪贴板内容的变化,并替换其中的回车,换行,逗号,再写入剪切板,以供使用. import pyperclip import time last_string = pyperclip.paste ...
- 【QT开发】QT在windows下的exe应用程序如何在别人的电脑上直接运行
当你利用QT编译了一个可执行程序,需要将这个可执行程序拷贝到别人的电脑上运行,这个时候除了这个可执行程序外,还需要支持的库才可用运行.一般来说通过下面的方法可以实现. 首先,需要看你用的是什 ...
- Python中Celery 的基本用法以及Django 结合 Celery 的使用和实时监控进程
celery是什么 1 celery是一个简单,灵活且可靠的,处理大量消息的分布式系统 2 专注于实时处理的异步任务队列 3 同时也支持任务调度 执行流程 Celery 基本使用 tasks.py i ...
- 教你用python爬虫监控教务系统,查成绩快人一步!
教你用python爬虫监控教务系统,查成绩快人一步!这几天考了大大小小几门课,教务系统又没有成绩通知功能,为了急切想知道自己挂了多少门,于是我写下这个脚本. 设计思路:设计思路很简单,首先对已有的成绩 ...
- python多线程监控指定目录
import win32file import tempfile import threading import win32con import os dirs=["C:\\WINDOWS\ ...
- 基于邮件系统的远程实时监控系统的实现 Python版
人生苦短,我用Python~ 界内的Python宣传标语,对Python而言,这是种标榜,实际上,Python确实是当下最好用的开发语言之一. 在相继学习了C++/C#/Java之后,接触Python ...
- 性能测试 基于Python结合InfluxDB及Grafana图表实时监控Android系统和应用进程
基于Python结合InfluxDB及Grafana图表实时监控Android系统和应用进程 By: 授客 QQ:1033553122 1. 测试环境 2. 实现功能 3. 使用前提 4. ...
- Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控
基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控 By: 授客 QQ:1033553122 1.测试环境 python 3.4 zookeeper- ...
- python性能监控初试
标 题: python性能监控初试作 者: itdef链 接: http://www.cnblogs.com/itdef/p/3990765.html 欢迎转帖 请保持文本完整并注明出处 之前性能统计 ...
随机推荐
- Scala 面向对象(十一):特质(接口) 四
1 扩展类的特质 特质可以继承类,以用来拓展该类的一些功能 所有混入该特质的类,会自动成为那个特质所继承的超类的子类 如果混入该特质的类,已经继承了另一个类(A类),则要求A类是特质超类的子类,否则就 ...
- Mysql基础(六):索引、数据库备份、锁和事务、慢查询优化、索引命中相关
目录 数据库05 /索引.数据库备份.锁和事务.慢查询优化.索引命中相关 1. 什么是索引 2. 索引的原理 3. 索引的数据结构(聚集索引.辅助索引) 4. 索引操作 5. 索引的两大类型hash与 ...
- java 面向对象(四十三):反射(七)反射应用四:动态代理
1.代理模式的原理:使用一个代理将对象包装起来, 然后用该代理对象取代原始对象.任何对原始对象的调用都要通过代理.代理对象决定是否以及何时将方法调用转到原始对象上. 2.静态代理2.1 举例:实现Ru ...
- 机器学习实战基础(三十五):随机森林 (二)之 RandomForestClassifier 之重要参数
RandomForestClassifier class sklearn.ensemble.RandomForestClassifier (n_estimators=’10’, criterion=’g ...
- SQLAlchemy(一):SQLAlchemy去连接数据库、ORM介绍、将ORM模型映射到数据库中
SQLAlchemy01 /SQLAlchemy去连接数据库.ORM介绍.将ORM模型映射到数据库中 目录 SQLAlchemy01 /SQLAlchemy去连接数据库.ORM介绍.将ORM模型映射到 ...
- Spring Boot整合swagger使用教程
目录 Swagger的介绍 优点与缺点 添加swagger 1.添加依赖包: 2.配置Swagger: 3.测试 场景: 定义接口组 定义接口 定义接口请求参数 场景一:请求参数是实体类. 场景二:请 ...
- Spring Boot 2.x基础教程:进程内缓存的使用与Cache注解详解
随着时间的积累,应用的使用用户不断增加,数据规模也越来越大,往往数据库查询操作会成为影响用户使用体验的瓶颈,此时使用缓存往往是解决这一问题非常好的手段之一.Spring 3开始提供了强大的基于注解的缓 ...
- js自定义获取浏览器宽高
/** * @description js自定义获取浏览器宽高 * * IE8 和 IE8 以下的浏览器不兼容 * window.innerWidth * window.innerHeight * * ...
- 【RPA Starter第一课】 Uipath RPA Starter Course
今天开始学习Uipath学院上面的课程,准备考下高级开发认证. 官网全部都是英文,然后自己一步一步的翻译,解读.开始第一步. 考纲里有写这需要学习哪些课程.自己按着上面来, 第一门课: RPA Sta ...
- day5 python代码块,流程控制
判断类型 # isinstance 用法一 isinstance(值,类型)--------------->bool isinstance(5,int)-----------------> ...