遍历方案
    从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上,可以按某种次序执行三个操作:
    1).访问结点本身(N)
    2).遍历该结点的左子树(L)
    3).遍历该结点的右子树(R)

有次序:
    NLR、LNR、LRN

遍历的命名

 根据访问结点操作发生位置命名:
NLR:前序遍历(PreorderTraversal亦称(先序遍历))  ——访问结点的操作发生在遍历其左右子树之前。
LNR:中序遍历(InorderTraversal)  ——访问结点的操作发生在遍历其左右子树之中(间)。
LRN:后序遍历(PostorderTraversal)    ——访问结点的操作发生在遍历其左右子树之后。

注:由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtlee)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

遍历算法

1).先序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
a.访问根结点
b.遍历左子树
c.遍历右子树

2).中序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
a.遍历左子树
b.访问根结点
c.遍历右子树

3).后序遍历得递归算法定义:
若二叉树非空,则依次执行如下操作:
a.遍历左子树
b.遍历右子树
c.访问根结点

一、二叉树的递归遍历:

# -*- coding: utf - 8 - *-
class TreeNode(object): def __init__(self, left=0, right=0, data=0):
self.left = left
self.right = right
self.data = data class BTree(object): def __init__(self, root=0):
self.root = root def is_empty(self):
if self.root is 0:
return True
else:
return False def preorder(self, treenode):
'前序(pre-order,NLR)遍历'
if treenode is 0:
return
print(treenode.data)
self.preorder(treenode.left)
self.preorder(treenode.right) def inorder(self, treenode):
'中序(in-order,LNR'
if treenode is 0:
return
self.inorder(treenode.left)
print(treenode.data)
self.inorder(treenode.right) def postorder(self, treenode):
'后序(post-order,LRN)遍历'
if treenode is 0:
return
self.postorder(treenode.left)
self.postorder(treenode.right)
print(treenode.data) node1 = TreeNode(data=1)
node2 = TreeNode(node1, 0, 2)
node3 = TreeNode(data=3)
node4 = TreeNode(data=4)
node5 = TreeNode(node3, node4, 5)
node6 = TreeNode(node2, node5, 6)
node7 = TreeNode(node6, 0, 7)
node8 = TreeNode(data=8)
root = TreeNode(node7, node8, 'root') bt = BTree(root) print(u''' #生成的二叉树 # ------------------------
# root
# 7 8
# 6
# 2 5
# 1 3 4
#
# ------------------------- ''')
print('前序(pre-order,NLR)遍历 :\n')
bt.preorder(bt.root) print('中序(in-order,LNR) 遍历 :\n')
bt.inorder(bt.root) print('后序(post-order,LRN)遍历 :\n')
bt.postorder(bt.root)

输出:

#生成的二叉树

# ------------------------
# root
# 7 8
# 6
# 2 5
# 1 3 4
#
# ------------------------- 前序(pre-order,NLR)遍历 : root
7
6
2
1
5
3
4
8
中序(in-order,LNR) 遍历 : 1
2
6
3
5
4
7
root
8
后序(post-order,LRN)遍历 : 1
2
3
4
5
6
7
8
root

二、.二叉树的非递归遍历

下面就用非递归的方式实现一遍。主要用到了 stack 和 queue维护一些数据节点:

# -*- coding: utf - 8 - *-
class TreeNode(object): def __init__(self, left=0, right=0, data=0):
self.left = left
self.right = right
self.data = data class BTree(object): def __init__(self, root=0):
self.root = root def is_empty(self):
if self.root is 0:
return True
else:
return False def preorder(self, treenode):
'前序(pre-order,NLR)遍历'
stack = []
while treenode or stack:
if treenode is not 0:
print(treenode.data)
stack.append(treenode)
treenode = treenode.left
else:
treenode = stack.pop()
treenode = treenode.right def inorder(self, treenode):
'中序(in-order,LNR) 遍历'
stack = []
while treenode or stack:
if treenode:
stack.append(treenode)
treenode = treenode.left
else:
treenode = stack.pop()
print(treenode.data)
treenode = treenode.right # def postorder(self, treenode):
# stack = []
# pre = 0
# while treenode or stack:
# if treenode:
# stack.append(treenode)
# treenode = treenode.left
# elif stack[-1].right != pre:
# treenode = stack[-1].right
# pre = 0
# else:
# pre = stack.pop()
# print pre.data def postorder(self, treenode):
'后序(post-order,LRN)遍历'
stack = []
queue = []
queue.append(treenode)
while queue:
treenode = queue.pop()
if treenode.left:
queue.append(treenode.left)
if treenode.right:
queue.append(treenode.right)
stack.append(treenode)
while stack:
print(stack.pop().data) def levelorder(self, treenode):
from collections import deque
if not treenode:
return
q = deque([treenode])
while q:
treenode = q.popleft()
print(treenode.data)
if treenode.left:
q.append(treenode.left)
if treenode.right:
q.append(treenode.right) node1 = TreeNode(data=1)
node2 = TreeNode(node1, 0, 2)
node3 = TreeNode(data=3)
node4 = TreeNode(data=4)
node5 = TreeNode(node3, node4, 5)
node6 = TreeNode(node2, node5, 6)
node7 = TreeNode(node6, 0, 7)
node8 = TreeNode(data=8)
root = TreeNode(node7, node8, 'root') bt = BTree(root) print(u''' #生成的二叉树 # ------------------------
# root
# 7 8
# 6
# 2 5
# 1 3 4
#
# ------------------------- ''')
print('前序(pre-order,NLR)遍历 :\n')
bt.preorder(bt.root) print('中序(in-order,LNR) 遍历 :\n')
bt.inorder(bt.root) print('后序(post-order,LRN)遍历 :\n')
bt.postorder(bt.root) print('层序(level-order,LRN)遍历 :\n')
bt.levelorder(bt.root)

输出:

#生成的二叉树

# ------------------------
# root
# 7 8
# 6
# 2 5
# 1 3 4
#
# ------------------------- 前序(pre-order,NLR)遍历 : root
7
6
2
1
5
3
4
8
中序(in-order,LNR) 遍历 : 1
2
6
3
5
4
7
root
8
后序(post-order,LRN)遍历 : 1
2
3
4
5
6
7
8
root
层序(level-order,LRN)遍历 : root
7
8
6
2
5
1
3
4

python数据结构之二叉树的遍历实例的更多相关文章

  1. python数据结构之二叉树的建立实例

    先建立二叉树节点,有一个data数据域,left,right 两个指针域 # coding:utf-8 class TreeNode(object): def __init__(self,left=N ...

  2. python数据结构之二叉树的统计与转换实例

    python数据结构之二叉树的统计与转换实例 这篇文章主要介绍了python数据结构之二叉树的统计与转换实例,例如统计二叉树的叶子.分支节点,以及二叉树的左右两树互换等,需要的朋友可以参考下 一.获取 ...

  3. 【数据结构】二叉树的遍历(前、中、后序及层次遍历)及leetcode107题python实现

    文章目录 二叉树及遍历 二叉树概念 二叉树的遍历及python实现 二叉树的遍历 python实现 leetcode107题python实现 题目描述 python实现 二叉树及遍历 二叉树概念 二叉 ...

  4. 算法与数据结构(三) 二叉树的遍历及其线索化(Swift版)

    前面两篇博客介绍了线性表的顺序存储与链式存储以及对应的操作,并且还聊了栈与队列的相关内容.本篇博客我们就继续聊数据结构的相关东西,并且所涉及的相关Demo依然使用面向对象语言Swift来表示.本篇博客 ...

  5. 【PHP数据结构】二叉树的遍历及逻辑操作

    上篇文章我们讲了许多理论方面的知识,虽说很枯燥,但那些都是我们今天学习的前提,一会看代码的时候你就会发现这些理论知识是多么地重要了.首先,我们还是要说明一下,我们学习的主要内容是二叉树,因为二叉树是最 ...

  6. python数据结构之二叉树遍历的实现

    本篇是实现二叉树的三种遍历,先序遍历,中序遍历,后序遍历 #!/usr/bin/python # -*- coding: utf-8 -*- class TreeNode(object): def _ ...

  7. Python数据结构之二叉树

    本来打算一个学期分别用C++.Python.Java实现数据结构,看来要提前了 这个是Python版本,我写的数据结构尽量保持灵活性,本文bt1是一般的插入法建立二叉树结构,bt2就是可以任意输入,至 ...

  8. python数据结构之二叉树的实现

    树的定义 树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构,很象自然界中的树那样.树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形 ...

  9. python 数据结构之二叉树

    二叉树关键在构建和遍历,python实现相对简单,我们在实现需要用到类,分别设置爱左右子树,根节点,然后从根进行遍历,进行判断,若为空进行树的构建,非空则返回到列表中即可,我在进行遍历时产生了一个错误 ...

随机推荐

  1. 今天来学习一下MySQl的 临时表,变量,行转列,预处理的一些相关技术的使用!

    先来简单了解一下MySQL数据库有意思的简介 MySQL这个名字,起源不是很明确.一个比较有影响的说法是,基本指南和大量的库和工具带有前缀“my”已经有10年以上, 而且不管怎样,MySQL AB创始 ...

  2. Spring Validation-用注解代替代码参数校验

    Spring Validation 概念 在原先的编码中,我们如果要验证前端传递的参数,一般是在接受到传递过来的参数后,手动在代码中做 if-else 判断,这种编码方式会带来大量冗余代码,十分的不优 ...

  3. Codehorses T-shirts (map+遍历)

    Codehorses has just hosted the second Codehorses Cup. This year, the same as the previous one, organ ...

  4. 【CF】Sereja and Arcs

    #include <bits/stdc++.h> #define llong long long using namespace std; const int N = 1e5; const ...

  5. [bash]调用linux命令获得结果存入变量的两种方式

    代码: #!/bin/bash ls=$(ls) echo $ls whoami=`whoami` echo $whoami 执行结果: [os-××××××××101z ~]$ sh cmd2.sh ...

  6. 20190923-05Linux用户组管理命令 000 013

    每个用户都有一个用户组,系统可以对一个用户组中的所有用户进行集中管理.不同Linux 系统对用户组的规定有所不同, 如Linux下的用户属于与它同名的用户组,这个用户组在创建用户时同时创建. 用户组的 ...

  7. Django设置前端背景图片

    设置 setting.py 文件 STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static&qu ...

  8. [程序员代码面试指南]二叉树问题-找到二叉树中的最大搜索二叉树(树形dp)

    题意 给定一颗二叉树的头节点,已知所有节点的值都不一样,找到含有节点最多的搜索二叉子树,并返回这个树的头节点. 题解 在后序遍历过程中实现. 求解步骤按树形dp中所列步骤.可能性三种:左子树最大.右子 ...

  9. 云计算openstack——虚拟机获取不到ip(13)

    一.现象描述: openstack平台中创建虚拟机后,虚拟机在web页面中显示获取到了ip,但是打开虚拟机控制台后查看网络状态,虚拟机没有ip地址,下图为故障截图: 二.分析思路: (1)查看neut ...

  10. elasticsearch 索引清理脚本及常用命令

    elastic索引日志清理不及时,很容易产生磁盘紧张,官网给出curl -k -XDELETE可以清理不需要的索引日志. 清理脚本 #!/bin/bash #Author: 648403020@qq. ...