python数据结构之二叉树的遍历实例
遍历方案
从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上,可以按某种次序执行三个操作:
1).访问结点本身(N)
2).遍历该结点的左子树(L)
3).遍历该结点的右子树(R)
有次序:
NLR、LNR、LRN
遍历的命名
根据访问结点操作发生位置命名:
NLR:前序遍历(PreorderTraversal亦称(先序遍历)) ——访问结点的操作发生在遍历其左右子树之前。
LNR:中序遍历(InorderTraversal) ——访问结点的操作发生在遍历其左右子树之中(间)。
LRN:后序遍历(PostorderTraversal) ——访问结点的操作发生在遍历其左右子树之后。
注:由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtlee)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
遍历算法
1).先序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
a.访问根结点
b.遍历左子树
c.遍历右子树
2).中序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
a.遍历左子树
b.访问根结点
c.遍历右子树
3).后序遍历得递归算法定义:
若二叉树非空,则依次执行如下操作:
a.遍历左子树
b.遍历右子树
c.访问根结点
一、二叉树的递归遍历:
# -*- coding: utf - 8 - *-
class TreeNode(object): def __init__(self, left=0, right=0, data=0):
self.left = left
self.right = right
self.data = data class BTree(object): def __init__(self, root=0):
self.root = root def is_empty(self):
if self.root is 0:
return True
else:
return False def preorder(self, treenode):
'前序(pre-order,NLR)遍历'
if treenode is 0:
return
print(treenode.data)
self.preorder(treenode.left)
self.preorder(treenode.right) def inorder(self, treenode):
'中序(in-order,LNR'
if treenode is 0:
return
self.inorder(treenode.left)
print(treenode.data)
self.inorder(treenode.right) def postorder(self, treenode):
'后序(post-order,LRN)遍历'
if treenode is 0:
return
self.postorder(treenode.left)
self.postorder(treenode.right)
print(treenode.data) node1 = TreeNode(data=1)
node2 = TreeNode(node1, 0, 2)
node3 = TreeNode(data=3)
node4 = TreeNode(data=4)
node5 = TreeNode(node3, node4, 5)
node6 = TreeNode(node2, node5, 6)
node7 = TreeNode(node6, 0, 7)
node8 = TreeNode(data=8)
root = TreeNode(node7, node8, 'root') bt = BTree(root) print(u''' #生成的二叉树 # ------------------------
# root
# 7 8
# 6
# 2 5
# 1 3 4
#
# ------------------------- ''')
print('前序(pre-order,NLR)遍历 :\n')
bt.preorder(bt.root) print('中序(in-order,LNR) 遍历 :\n')
bt.inorder(bt.root) print('后序(post-order,LRN)遍历 :\n')
bt.postorder(bt.root)
输出:
#生成的二叉树 # ------------------------
# root
# 7 8
# 6
# 2 5
# 1 3 4
#
# ------------------------- 前序(pre-order,NLR)遍历 : root
7
6
2
1
5
3
4
8
中序(in-order,LNR) 遍历 : 1
2
6
3
5
4
7
root
8
后序(post-order,LRN)遍历 : 1
2
3
4
5
6
7
8
root
二、.二叉树的非递归遍历
下面就用非递归的方式实现一遍。主要用到了 stack 和 queue维护一些数据节点:
# -*- coding: utf - 8 - *-
class TreeNode(object): def __init__(self, left=0, right=0, data=0):
self.left = left
self.right = right
self.data = data class BTree(object): def __init__(self, root=0):
self.root = root def is_empty(self):
if self.root is 0:
return True
else:
return False def preorder(self, treenode):
'前序(pre-order,NLR)遍历'
stack = []
while treenode or stack:
if treenode is not 0:
print(treenode.data)
stack.append(treenode)
treenode = treenode.left
else:
treenode = stack.pop()
treenode = treenode.right def inorder(self, treenode):
'中序(in-order,LNR) 遍历'
stack = []
while treenode or stack:
if treenode:
stack.append(treenode)
treenode = treenode.left
else:
treenode = stack.pop()
print(treenode.data)
treenode = treenode.right # def postorder(self, treenode):
# stack = []
# pre = 0
# while treenode or stack:
# if treenode:
# stack.append(treenode)
# treenode = treenode.left
# elif stack[-1].right != pre:
# treenode = stack[-1].right
# pre = 0
# else:
# pre = stack.pop()
# print pre.data def postorder(self, treenode):
'后序(post-order,LRN)遍历'
stack = []
queue = []
queue.append(treenode)
while queue:
treenode = queue.pop()
if treenode.left:
queue.append(treenode.left)
if treenode.right:
queue.append(treenode.right)
stack.append(treenode)
while stack:
print(stack.pop().data) def levelorder(self, treenode):
from collections import deque
if not treenode:
return
q = deque([treenode])
while q:
treenode = q.popleft()
print(treenode.data)
if treenode.left:
q.append(treenode.left)
if treenode.right:
q.append(treenode.right) node1 = TreeNode(data=1)
node2 = TreeNode(node1, 0, 2)
node3 = TreeNode(data=3)
node4 = TreeNode(data=4)
node5 = TreeNode(node3, node4, 5)
node6 = TreeNode(node2, node5, 6)
node7 = TreeNode(node6, 0, 7)
node8 = TreeNode(data=8)
root = TreeNode(node7, node8, 'root') bt = BTree(root) print(u''' #生成的二叉树 # ------------------------
# root
# 7 8
# 6
# 2 5
# 1 3 4
#
# ------------------------- ''')
print('前序(pre-order,NLR)遍历 :\n')
bt.preorder(bt.root) print('中序(in-order,LNR) 遍历 :\n')
bt.inorder(bt.root) print('后序(post-order,LRN)遍历 :\n')
bt.postorder(bt.root) print('层序(level-order,LRN)遍历 :\n')
bt.levelorder(bt.root)
输出:
#生成的二叉树 # ------------------------
# root
# 7 8
# 6
# 2 5
# 1 3 4
#
# ------------------------- 前序(pre-order,NLR)遍历 : root
7
6
2
1
5
3
4
8
中序(in-order,LNR) 遍历 : 1
2
6
3
5
4
7
root
8
后序(post-order,LRN)遍历 : 1
2
3
4
5
6
7
8
root
层序(level-order,LRN)遍历 : root
7
8
6
2
5
1
3
4
python数据结构之二叉树的遍历实例的更多相关文章
- python数据结构之二叉树的建立实例
先建立二叉树节点,有一个data数据域,left,right 两个指针域 # coding:utf-8 class TreeNode(object): def __init__(self,left=N ...
- python数据结构之二叉树的统计与转换实例
python数据结构之二叉树的统计与转换实例 这篇文章主要介绍了python数据结构之二叉树的统计与转换实例,例如统计二叉树的叶子.分支节点,以及二叉树的左右两树互换等,需要的朋友可以参考下 一.获取 ...
- 【数据结构】二叉树的遍历(前、中、后序及层次遍历)及leetcode107题python实现
文章目录 二叉树及遍历 二叉树概念 二叉树的遍历及python实现 二叉树的遍历 python实现 leetcode107题python实现 题目描述 python实现 二叉树及遍历 二叉树概念 二叉 ...
- 算法与数据结构(三) 二叉树的遍历及其线索化(Swift版)
前面两篇博客介绍了线性表的顺序存储与链式存储以及对应的操作,并且还聊了栈与队列的相关内容.本篇博客我们就继续聊数据结构的相关东西,并且所涉及的相关Demo依然使用面向对象语言Swift来表示.本篇博客 ...
- 【PHP数据结构】二叉树的遍历及逻辑操作
上篇文章我们讲了许多理论方面的知识,虽说很枯燥,但那些都是我们今天学习的前提,一会看代码的时候你就会发现这些理论知识是多么地重要了.首先,我们还是要说明一下,我们学习的主要内容是二叉树,因为二叉树是最 ...
- python数据结构之二叉树遍历的实现
本篇是实现二叉树的三种遍历,先序遍历,中序遍历,后序遍历 #!/usr/bin/python # -*- coding: utf-8 -*- class TreeNode(object): def _ ...
- Python数据结构之二叉树
本来打算一个学期分别用C++.Python.Java实现数据结构,看来要提前了 这个是Python版本,我写的数据结构尽量保持灵活性,本文bt1是一般的插入法建立二叉树结构,bt2就是可以任意输入,至 ...
- python数据结构之二叉树的实现
树的定义 树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构,很象自然界中的树那样.树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形 ...
- python 数据结构之二叉树
二叉树关键在构建和遍历,python实现相对简单,我们在实现需要用到类,分别设置爱左右子树,根节点,然后从根进行遍历,进行判断,若为空进行树的构建,非空则返回到列表中即可,我在进行遍历时产生了一个错误 ...
随机推荐
- AQI分析
A Q I 分 析 1.背景信息 AOI( Air Quality Index),指空气质量指数,用来衡量空气清洁或污染的程度.值越小,表示空气质量越好.近年来,因为环境问题,空气质量也越来越受到人 ...
- Android开发之最火的开源框架之一Xutils2详解(摘自开源作者官方介绍详解)
此框架说实话还是挺不错的,挺好用的,功能多,所以我也用过. 由于CSDN博客写的字数有限制,所以全文的用法打包成了markdown 文件,因为markdown真的太还用了. 全文下载地址为: http ...
- Android开发之常用框架WebView详解代码。超详细,送给初学者,完全掌握此控件
这是我特意为新手小白写的一个代码,教大家完完全全掌握WebView, 我感觉,你看懂这个,基本上可以满足以后工作中的需要了,(只针对Webview的使用),但是其实它还有好多功能,比如真正的设计到和H ...
- steam 数据转换
目录 数组和集合互转 数组转集合 方法一 遍历 方法二 asList 方法三 steam 集合转数组 方法一 循环 方法二 toArray 方法三 steam 小结 string转为Character ...
- Web最最基础
web 网站网页一个网站是由多个网页组成的一个网页=网页元素(文字.图片.超链接.文本框.按钮.下拉框ext.) +样式+用户交互 一个网页=(网页元素)html+(样式)CSS+(用户交互)Java ...
- 2申请高德地图key 初始化地图
https://console.amap.com/dev/key/app vue-amap-基于-vue-2x-与高德的地图组件 https://elemefe.github.io/vue-amap/ ...
- Zabbix Agent日志路径定位
Zabbix Agent的日志一般记录在zabbix_agentd.log中,那么如何定位.找到Zabbix Agent的日志路径呢? 下面从Linux操作系统和Windows系统来简单总结一下,方便 ...
- JSON<前后端的沟通>
1.什么是JSON ==>1什么是json json:是一种轻量级数据交互格式 数据交互:每一种语言的编码都不一样,他们之间互不认识.但是现在的情况是不同的语言开发出的系统也需要进行数据交互,这 ...
- C++STL中vector的初始化
vector的初始化有很多方式,在N维初始化时还会一些容易出现错误的地方.下面进行总结 以下的总结均以int作为模板参数 一维vector的初始化 vector的构造函数通常来说有五种,如下: vec ...
- [Java数据结构]使用Stack检查表达式中左右括号是否匹配
Stack是一种先进后出的数据结构后,这个特点决定了它在递归向下的场景中有独到的功效. 以下程序展示了它在检查表达式中括号匹配的有效性: 程序: package com.heyang.util; im ...