「状压DP」「暴力搜索」排列perm
「状压DP」「暴力搜索」排列
题目描述:
题目描述
给一个数字串 s 和正整数 d, 统计 sss 有多少种不同的排列能被 d 整除(可以有前导 0)。例如 123434 有 90 种排列能被 2 整除,其中末位为 2 的有 30 种,末位为 4 的有 60 种。
输入格式
输入第一行是一个整数 TTT,表示测试数据的个数,以下每行一组 s 和 d,中间用空格隔开。s 保证只包含数字 0,1,2,3,4,5,6,7,8,9
输出格式
每个数据仅一行,表示能被 d 整除的排列的个数。
输入输出样例
输入 #1
7
000 1
001 1
1234567890 1
123434 2
1234 7
12345 17
12345678 29
输出 #1
1
3
3628800
90
3
6
1398
说明/提示
100% 的数据满足:s 的长度不超过 10,1≤d≤1000,1≤T≤15。
在前三个例子中,排列分别有 1,3,36288001 种,它们都是 1 的倍数。
解法1:状压DP
思路:
s的长度很短,不是暴搜就是状压,然鹅这道题都可以用
大多数状压中都是当前某个状态对之后于此相关状态产生影响
因此可以对整个序列的长度进行状压,详见代码
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<stack>
using namespace std;
const int maxn=(1<<10)+5,INF=0x3f3f3f3f;
int n,m,f[maxn][1000],sum[11],mol,a[maxn],vis[maxn];
char str[1000];
inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')s=s*10+ch-'0',ch=getchar();
return s*w;
}
int main(){
freopen("a.in","r",stdin);
int t=read();
while(t--){
memset(f,0,sizeof(f));
memset(a,0,sizeof(a));
memset(sum,0,sizeof(sum));
scanf("%s",str);
int n=strlen(str);
mol=read();
for(int i=1;i<=n;i++){
a[i]=str[i-1]-'0';
}
int maxs=(1<<n)-1;
f[0][0]=1;//0序列为000....的方案肯定只有一种
for(int s=0;s<=maxs;s++){//s代表所选的数的状态,00101代表选了第一个数和第三个数的状态
memset(vis,0,sizeof(vis));//vis记录这个数是否被访问过,因为相同的数会被重复计入方案,
//如,对11230排列,11230和11230会被重复计算,用vis就可以去重,当然也可以不用vis用数学方法去重,即记录所有数出现的个数,最后ans/=cnt[i]!(i=0~9)
for(int i=1;i<=n;i++){ //i表示下一个要选的数
if(s&(1<<(i-1))||vis[a[i]])continue;//s&(i<<(i-1))表示当前枚举的数被包含在了当前状态s里面,不用再次计算
vis[a[i]]=1;
for(int k=0;k<mol;k++){//枚举所有余数k,f[s][k]代表所选的数的状态为s,且余数为k时的总排列数
f[s|(1<<(i-1))][(k*10+a[i])%mol]+=f[s][k];//解释:因为我们的状态是从小到大枚举的,所以f[s][k]会对
//它的所有下一个状态产生影响,而下一个状态的余数恰恰是(k*10+a[i])%mol
//举个例子,序列1234,模数是4,当前状态0011代表12的排列,12会转移到124和123即 原数*10+a[i],相应的余数就会变成 (余数*10+a[i])%mol,即0和3
// cout<<f[s|(1<<(i-1))][(k*10+a[i])%mol]<<endl;
}
}
}
cout<<f[maxs][0]<<endl;
}
}
解法2:暴搜
相对于状压而言,暴搜更好想一些,就是从低位依次枚举至高位,但是时间消耗更大,洛谷上会T两个点,可能剪剪枝会过
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<stack>
using namespace std;
const int maxn=(1<<10)+5,INF=0x3f3f3f3f;
int n,m,f[maxn][1000],sum[11],mol,a[maxn],vis[maxn],ans;
char str[1000];
inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')s=s*10+ch-'0',ch=getchar();
return s*w;
}
void DFS(int now,long long x){//看数据范围,不开long long会炸,x代表当前的数,now代表当前位数
if(now>n){//now>n说明x是末状态
if(x%mol==0)ans++;
return;
}
for(int i=0;i<=9;i++){
if(sum[i]){
sum[i]--;//为保证当前这一位选取这个元素对这一位选取其他元素没影响,所以自减后要自加回来
DFS(now+1,x*10+i);
sum[i]++;
}
}
}
int main(){
freopen("a.in","r",stdin);
int t=read();
while(t--){
memset(a,0,sizeof(a));
memset(sum,0,sizeof(sum));
string str;
cin>>str;
mol=read();
n=str.size();
ans=0;
for(int i=0;i<str.size();i++){
a[i]=str[i]-'0';
sum[a[i]]++;
}
DFS(1,0);
cout<<ans<<endl;
}
}
解法3:next_permutation生成全排列
应该所有人都想过用全排列来写,但是时间开销很大,吾日观洛谷,发现STL中的几个比较有趣的函数:
next_permutation:从原递增序列中求出所有全排列
prev_permutation:从原递减序列中求出所有全排列
atol:将字符串转换为数列
详见代码
代码1:不用atol正常写
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<stack>
using namespace std;
const int maxn=(1<<10)+5,INF=0x3f3f3f3f;
int n,m,f[maxn][1000],sum[11],mol,a[maxn],vis[maxn],ans;
char str[1000];
inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')s=s*10+ch-'0',ch=getchar();
return s*w;
}
int main(){
freopen("a.in","r",stdin);
int t=read();
while(t--){
memset(a,0,sizeof(a));
memset(sum,0,sizeof(sum));
string str;
cin>>str;
mol=read();
n=str.size();
ans=0;
for(int i=0;i<n;i++){
a[i]=str[i]-'0';
}
sort(a,a+n);//严格要求必须递增,否则全排列不对
do{
long long temp=0;
for(int i=0;i<n;i++)temp=temp*10+a[i];//全排列是保存在数组a里的,通过这种方法取出来
if(temp%mol==0)ans++;
}while(next_permutation(a,a+n));
cout<<ans<<endl;
}
}
代码2:用atol
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<stack>
using namespace std;
const int maxn=(1<<10)+5,INF=0x3f3f3f3f;
int n,m,f[maxn][1000],sum[11],mol,a[maxn],vis[maxn],ans;
char str[1000];
inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')s=s*10+ch-'0',ch=getchar();
return s*w;
}
int main(){
freopen("a.in","r",stdin);
int t=read();
while(t--){
memset(a,0,sizeof(a));
memset(sum,0,sizeof(sum));
char str[maxn];//string排序排的是字符串,char排的是字符
cin>>str;
mol=read();
n=strlen(str);
ans=0;
sort(str,str+n);
do{
long long temp=atoll(str);//直接转
if(temp%mol==0)ans++;
}while(next_permutation(str,str+n));
cout<<ans<<endl;
}
}
「状压DP」「暴力搜索」排列perm的更多相关文章
- 「BZOJ 5010」「FJOI 2017」矩阵填数「状压DP」
题意 你有一个\(h\times w\)的棋盘,你需要在每个格子里填\([1, m]\)中的某个整数,且满足\(n\)个矩形限制:矩形的最大值为某定值.求方案数\(\bmod 10^9+7\) \(h ...
- UVaLive 6625 Diagrams & Tableaux (状压DP 或者 DFS暴力)
题意:给一个的格子图,有 n 行单元格,每行有a[i]个格子,要求往格子中填1~m的数字,要求每个数字大于等于左边的数字,大于上边的数字,问有多少种填充方法. 析:感觉像个DP,但是不会啊...就想暴 ...
- 「BZOJ 5161」最长上升子序列「状压DP」
题意 求一个\(1\sim n\)的排列LIS的期望长度,\(n\leq 28\) 题解 考虑朴素的LIS:\(f[i] = min(f[j]) + 1\) 记\(mx[i]\)为\(f\)的前缀最大 ...
- ☆ [POJ2411] Mondriaan's Dream 「状压DP」
传送门 >Here< 题意:用1*2的砖块铺满n*m的地板有几种方案 思路分析 状压经典题! 我们以$f[i][j]$作为状态,表示第i行之前全部填完并且第i行状态为j(状压)时的方案数. ...
- 「CF744C」Hongcow Buys a Deck of Cards「状压 DP」
题意 你有\(n\)个物品,物品和硬币有\(A\),\(B\)两种类型,假设你有\(M\)个\(A\)物品和\(N\)个\(B\)物品 每一轮你可以选择获得\(A, B\)硬币各\(1\)个,或者(硬 ...
- 【bzoj5161】最长上升子序列 状压dp+打表
题目描述 现在有一个长度为n的随机排列,求它的最长上升子序列长度的期望. 为了避免精度误差,你只需要输出答案模998244353的余数. 输入 输入只包含一个正整数n.N<=28 输出 输出只包 ...
- 「算法笔记」状压 DP
一.关于状压 dp 为了规避不确定性,我们将需要枚举的东西放入状态.当不确定性太多的时候,我们就需要将它们压进较少的维数内. 常见的状态: 天生二进制(开关.选与不选.是否出现--) 爆搜出状态,给它 ...
- 「PKUSC2018」最大前缀和(状压dp)
前言 考试被\(hyj\)吊着打... Solution 考虑一下如果前缀和如果在某一个位置的后面的任意一个前缀和都<=0,肯定这就是最大的. 然后这样子就考虑左右两边的状压dp,然后就好了. ...
- loj2540 「PKUWC2018」随机算法 【状压dp】
题目链接 loj2540 题解 有一个朴素三进制状压\(dp\),考虑当前点三种状态:没考虑过,被选入集合,被排除 就有了\(O(n3^{n})\)的转移 但这样不优,我们考虑优化状态 设\(f[i] ...
随机推荐
- java实现第九届蓝桥杯全排列
全排列 对于某个串,比如:"1234",求它的所有全排列. 并且要求这些全排列一定要按照字母的升序排列. 对于"1234",应该输出(一共4!=24行): 12 ...
- CDN百科 | 假如没有CDN,网络世界会变成什么样?
很多人都知道CDN是内容分发加速,所谓内容分发,就是将本来位于源站的内容分发到全国各地的节点,方便用户去就近访问所需的内容.随着移动互联网.云计算等一代代技术变革,CDN已经成为了缓解互联网网络拥塞. ...
- DevOps系列——Jenkins/Gitlab自动打包部署
前面只说了DevOps的两个基础组件Jenkins和GitLab,客官也不要着急,我们玩就玩的深入一点,Gitlab和Jenkins的各种配置和 插件很多,也够啃一阵子的,不要照着操作一通就感觉万事大 ...
- el-table 表格加图片、加音频、加序号、多级动态表头
elemnet-ui组件库大家应该不陌生,在展示多条结构类似的数据方面,el-table可谓扛把子,不仅可以把数据展示的整齐,还支持排序.筛选或其他自定义操作.那么,除了上述的基本功能外,你还遇到过哪 ...
- MySQL触发器的详细教学与综合分析
所有知识体系文章,GitHub已收录,欢迎老板们前来Star! GitHub地址: https://github.com/Ziphtracks/JavaLearningmanual MySQL触发器 ...
- Jquery封装:下拉框插件
代码如下: ;(function ($, window) { $.fn.addSelect = function (options) { //合并传入与默认的参数 var opts = $.exten ...
- CSS中的百分比(%)如何使用???
除了height以外垂直方向上的margin-top(bottom)或者padding-top(bottom)的百分比取值都是相对于父元素的宽度 在默认的content-box盒模型下元素的width ...
- 通过Nginx、Consul、Upsync实现动态负载均衡和服务平滑发布
前提 前段时间顺利地把整个服务集群和中间件全部从UCloud迁移到阿里云,笔者担任了架构和半个运维的角色.这里详细记录一下通过Nginx.Consul.Upsync实现动态负载均衡和服务平滑发布的核心 ...
- .net core3.1 abp动态菜单和动态权限(动态菜单实现和动态权限添加) (三)
我们来创建动态菜单吧 首先,先对动态菜单的概念.操作.流程进行约束:1.Host和各个Tenant有自己的自定义菜单2.Host和各个Tenant的权限与自定义菜单相关联2.Tenant有一套默认的菜 ...
- 【JMeter_15】JMeter逻辑控制器__仅一次控制器<Once Only Controller>
仅一次控制器<Once Only Controller> 业务逻辑: 在每个线程内,该控制器下的内容只会被执行一遍,无论循环多少次,都只执行一遍.<嵌套在循环控制器之内时是个例外,每 ...