Codeforces Round #665 (Div. 2) Distance and Axis、
题目链接:Distance and Axis
题意:在ox轴上,给出点A的横坐标x,你可以向左或右移动点A(x+1/x-1),问你最小移动A的次数,以使得可以在ox轴上找到B点位置,B点满足从O到B的距离与从A到B的距离之间的绝对差等于k。
题解:
先特判下:
if(k==0)
{
if(n%2)
printf("1\n");
else printf("0\n");
}
else if(k>=n)
{
printf("%d\n",k-n);
}
对于A点坐标x,最终要移动到哪里,x满足x=2*min(OB,AB)+k
那么枚举OB长度就行,找到距离x点最近那个点就行
为什么不枚举AB,因为枚举它们两个谁,代码都一样
代码:

1 #include<stack>
2 #include<queue>
3 #include<map>
4 #include<cstdio>
5 #include<cstring>
6 #include<iostream>
7 #include<algorithm>
8 #include<vector>
9 #define fi first
10 #define se second
11 #define pb push_back
12 using namespace std;
13 typedef long long ll;
14 const int maxn=2000+10;
15 const int mod=1e9+7;
16 const double eps=1e-8;
17 const int INF = 0x3f3f3f3f;
18 int main()
19 {
20 int t;
21 scanf("%d",&t);
22 while(t--)
23 {
24 int n,k;
25 scanf("%d%d",&n,&k);
26 if(k==0)
27 {
28 if(n%2)
29 printf("1\n");
30 else printf("0\n");
31 }
32 else if(k>=n)
33 {
34 printf("%d\n",k-n);
35 }
36 else
37 { //k+2min(OB,AB)
38 int l=0,r=n,mid,minn=INF;
39 while(l<=r)
40 {
41 mid=(l+r)>>1;
42 int ans=mid*2+k;
43 if(ans>n)
44 {
45 r=mid-1;
46 minn=min(minn,ans-n);
47 }
48 else
49 {
50 l=mid+1;
51 minn=min(minn,n-ans);
52 }
53 }
54 printf("%d\n",minn);
55 }
56 }
57 return 0;
58 }
题目链接:Ternary Sequence
题意:
你有两个序列a,b。序列是由0,1,2构成。给你x1,y1,z1表示a序列中0,1,2的数量,给你x2,y2,z2表示b序列中0,1,2的数量,
如果你构造的a,b序列中,ai==bi,那么结果+0,如果ai>bi,结果加ai*bi。如果ai<bi,结果减ai*bi
让你输出最大结果
题解:
结果想尽可能大,那就先让z1的2和y2的1结合,那么结果这个时候为2*min(z1,y2)
然后如果结果变小,肯定是z2的2和y1的1结合了,那么我们先让z2和x1结合,再和进行完上面操作的z2结合,最后结果减去剩余的z2*2
代码:

1 #include<stack>
2 #include<queue>
3 #include<map>
4 #include<cstdio>
5 #include<cstring>
6 #include<iostream>
7 #include<algorithm>
8 #include<vector>
9 #define fi first
10 #define se second
11 #define pb push_back
12 using namespace std;
13 typedef long long ll;
14 const int maxn=2000+10;
15 const int mod=1e9+7;
16 const double eps=1e-8;
17 const int INF = 0x3f3f3f3f;
18 int main()
19 {
20 int t;
21 scanf("%d",&t);
22 while(t--)
23 {
24 int x1,x2,y1,y2,z1,z2;
25 scanf("%d%d%d",&x1,&y1,&z1);
26 scanf("%d%d%d",&x2,&y2,&z2);
27 int sum=0,ans=min(z1,y2);
28 z1-=ans;
29 y2-=ans;
30 sum=sum+ans*2;
31
32 ans=min(x1,z2);
33 x1-=ans;
34 z2-=ans;
35
36 if(z2)
37 {
38 ans=min(z1,z2);
39 z1-=ans;
40 z2-=ans;
41 if(z2)
42 {
43 sum=sum-z2*2;
44 }
45 }
46 printf("%d\n",sum);
47 }
48 return 0;
49 }
题目链接:Mere Array
题意:
给你一个序列,如果gcd(ai,aj)==序列中的最小值,那么ai和aj可以交换,问你最后能不能把原序列变成一个非递减序列
题解:
我们设序列最小值为minn,我们把可以被minn整除的数找出来,那么剩下数的位置是不能改变的
这个时候我们对原序列sort从小到大排序,判断一下我们要构成的最终序列中,那么不能被minn整除的数的位置改变了没有
如果改变了,那就输出NO,否则YES
毕竟对于可以被minn整除的数来说,它们的位置总是可以通过minn来达到间接互换
代码:

1 #include<stack>
2 #include<queue>
3 #include<map>
4 #include<cstdio>
5 #include<cstring>
6 #include<iostream>
7 #include<algorithm>
8 #include<vector>
9 #define fi first
10 #define se second
11 #define pb push_back
12 using namespace std;
13 typedef long long ll;
14 const int maxn=1e5+10;
15 const int mod=1e9+7;
16 const double eps=1e-8;
17 const int INF = 0x3f3f3f3f;
18 ll v[maxn],w[maxn];
19 int main()
20 {
21 ll t;
22 scanf("%lld",&t);
23 while(t--)
24 {
25 ll n,minn=INF,flag=0;
26 scanf("%lld",&n);
27 for(ll i=1;i<=n;++i)
28 scanf("%lld",&v[i]),w[i]=v[i],minn=min(minn,v[i]);
29 sort(v+1,v+1+n);
30 ll last=0;
31 for(ll i=1;i<=n;++i)
32 {
33 if(v[i]%minn==0) continue;
34 if(v[i]%minn && v[i]==w[i] && last<=w[i]) last=w[i];
35 else
36 {
37 flag=1;
38 break;
39 }
40 }
41 if(flag) printf("NO\n");
42 else printf("YES\n");
43 }
44 return 0;
45 }
Codeforces Round #665 (Div. 2) Distance and Axis、的更多相关文章
- Codeforces Round #665 (Div. 2)
Codeforces Round #665 (Div. 2) A. Distance and Axis 如果\(B\)在\(O\)左边,那么只能是定值\(OA\) 如果\(B\)在\(OA\)中间 ...
- Codeforces Round #665 (Div. 2) 题解
Codeforces Round #665 (Div. 2) 题解 写得有点晚了,估计都官方题解看完切掉了,没人看我的了qaq. 目录 Codeforces Round #665 (Div. 2) 题 ...
- Codeforces Round #433 (Div. 2)【A、B、C、D题】
题目链接:Codeforces Round #433 (Div. 2) codeforces 854 A. Fraction[水] 题意:已知分子与分母的和,求分子小于分母的 最大的最简分数. #in ...
- Codeforces Round #665 (Div. 2)A-C题解
A. Distance and Axis 题目:http://codeforces.com/contest/1401/problem/A 题解:对于n来说分两种情况,一是奇数,二则是偶数 ①奇数:对于 ...
- Codeforces Round #665 (Div. 2) D. Maximum Distributed Tree 题解(贪心+易错)
题目链接 题目大意 给你一课树,要你给每一条边分权值,每条边的权值大于0,他们的乘积等于k,而且要使得n-1条边1的数量尽可能少,定义 f(u,v)为u到v的边权和求 \(\max \sum_{i=1 ...
- Codeforces Round #665 (Div. 2) D - Maximum Distributed Tree dfs贡献记录
题意: t组输入,每组数据中n个节点构成一棵树,然后给你n-1条边.给你一个m,然后给你m个k的素数因子,你需要给这n-1条边都赋一个权值,这n-1条边的权值之积应该等于k.如果k的素数因子数量小于n ...
- Codeforces Round #665 (Div. 2) D. Maximum Distributed Tree (dfs计数,树)
题意:给你含有\(n\)个节点,\(n-1\)条边的树,以及\(m\)个质数和\(1\),你需要在这\(m\)个质数和一个\(1\)选择数(质数只能选一次,\(1\)可以多选)给\(n-1\)条边赋值 ...
- Codeforces Round #579 (Div. 3) B Equal Rectangles、C. Common Divisors
B Equal Rectangles 题意: 给你4*n个数,让你判断能不能用这个4*n个数为边凑成n个矩形,使的每个矩形面积相等 题解: 原本是想着用二分来找出来那个最终的面积,但是仔细想一想,那个 ...
- Codeforces Round #651 (Div. 2) A Maximum GCD、B GCD Compression、C Number Game、D Odd-Even Subsequence
A. Maximum GCD 题意: t组输入,然后输入一个n,让你在区间[1,n]之间找出来两个不相等的数a,b.求出来gcd(a,b)(也就是a,b最大公约数).让你求出来最大的gcd(a,b)是 ...
随机推荐
- 【Flutter】事件处理与通知之原始指针事件处理
前言 接口描述 代码示例 总结
- intellij idea2020将javaWeb项目打成war包并部署到阿里云服务器遇到java.lang. UnsupportedClass VersionError问题(已解决)
首先将javaweb项目打包成war文件(有关如何打包参考 https://jingyan.baidu.com/article/20b68a88642829386cec62f7.html.https: ...
- Hadoop源码:namenode格式化和启动过程实现
body { margin: 0 auto; font: 13px / 1 Helvetica, Arial, sans-serif; color: rgba(68, 68, 68, 1); padd ...
- 修改hosts文件后不生效,该怎么办
对于web开发来说,经常需要修改hosts文件,用来将域名与ip对应匹配.但是有时候发现hosts文件明明已经改了,但就是不生效,页面还会跳到某个丧心病狂的私人小站.hosts文件不生效有很多种原因, ...
- CTFshow萌新赛-密码学签到
查看密码信息 猜测为base家族 存在"^"符号,所以应该是在base64以上 使用base85解密 成功拿到flag
- paramiko模块简单用法
最简单最基本的用法 1 #__*__coding:utf-8__*__ 2 import paramiko 3 hostname = '192.168.1.1' 4 username = 'root' ...
- 未使用绑定变量对share_pool的影响
oracle SGA中包含数据高速缓冲,重做日志缓冲,以及共享池(share_pool).共享池中包含库高速缓冲(所有的SQL,执行计划等)和数据字典缓冲(对象的定义,权限等). 所以,如果SQL中没 ...
- 使用CDN访问免备案网站
如何使用CDN绕过服务器域名备案 前言 不得不说,大陆需要备案,时间真的有点长,至少得5天~20天起步,对于我们这些火急火燎的站长还是比较难受的.这里教大家如何使用cdn绕过备案, 访问速度很快,亲测 ...
- Ubuntu18.04完全卸载mysql5.7并安装mysql8.0的安装方法
Ubuntu18.04版本下,如果直接输入: sudo apt install mysql-server 命令,会默认安装mysql5.7版本,安装过程并没有提示输入密码,安装完成后也无法正常登录,这 ...
- 大促密集,CDN如何保障电商体验如丝般顺滑?
简介: 前不久,阿里云技术天团空降CSDN在线峰会,对核心技术竞争力进行解读.其中,阿里云高级技术专家曾福华分享了<双11: CDN如何保障电商大促如丝般顺滑>的议题.俗话说:养兵千日,用 ...