【noi 2.6_9272】偶数个数字3(DP)
题意:问所有的N位数中,有多少个有偶数个数字3的数。
解法:f[i][j]表示i位数中含数字3的个数模2为j的个数。于是分第i位填3还是不填3讨论。
小tip:要模12345;for循环新定义了一个变量会慢一点点~
1 #include<cstdio>
2 #include<cstdlib>
3 #define N 1010
4 #define mod 12345
5
6 int f[2][2];
7 int main()
8 {
9 int n;
10 scanf("%d",&n);
11 if (n==1) {printf("9\n");return 0;}
12 f[1][0]=8,f[1][1]=1;
13 int k=0;
14 for (int i=2;i<=n;i++)
15 {
16 f[k][0]=(f[1-k][0]*9+f[1-k][1])%mod;
17 f[k][1]=(f[1-k][1]*9+f[1-k][0])%mod;
18 k=1-k;
19 }
20 printf("%d\n",f[1-k][0]);
21 return 0;
22 }
【noi 2.6_9272】偶数个数字3(DP)的更多相关文章
- 【OpenJudge9272】【DP】偶数个数字3
偶数个数字3 总时间限制: 10000ms 单个测试点时间限制: 1000ms 内存限制: 131072kB [描述] 在所有的N位数中,有多少个数中有偶数个数字3? [输入] 一行给出数字N,N&l ...
- 【NOI】9272 偶数个三
题目 链接:bajdcc/ACM 描述 在所有的N位数中,有多少个数中有偶数个数字3?结果模12345.(1<=N<=10000) 样例输入 2 样例输出 73 方法一:穷举 评价:最简单 ...
- 取数字(dp优化)
取数字(dp优化) 给定n个整数\(a_i\),你需要从中选取若干个数,使得它们的和是m的倍数.问有多少种方案.有多个询问,每次询问一个的m对应的答案. \(1\le n\le 200000,1\le ...
- 繁繁的数字 背包DP
繁繁的数字 背包DP 问一个数\(n\)有多少种二进制分解方案数 \(n\le 10^5\) 如7有7=4+2+1=4+1+1+1=2+2+2+1=2+2+1+1+1=2+1+1+1+1+1=1+1+ ...
- P2034 选择数字——线性dp(单调队列优化)
选择数字 题目描述 给定一行 \(n\) 个非负整数 \(a[1]...a[n]\) .现在你可以选择其中若干个数,但不能有超过 \(k\) 个连续的数字被选择.你的任务是使得选出的数字的和最大. 输 ...
- [LeetCode]1295. 统计位数为偶数的数字
给你一个整数数组 nums,请你返回其中位数为 偶数 的数字的个数. 示例 1: 输入:nums = [12,345,2,6,7896] 输出:2 解释: 12 是 2 位数字(位数为偶数) 345 ...
- NOI.AC#2139-选择【斜率优化dp,树状数组】
正题 题目链接:http://noi.ac/problem/2139 题目大意 给出\(n\)个数字的序列\(a_i\).然后选出一个不降子序列最大化子序列的\(a_i\)和减去没有任何一个数被选中的 ...
- xbz分组题B 吉利数字 数位dp入门
B吉利数字时限:1s [题目描述]算卦大湿biboyouyun最近得出一个神奇的结论,如果一个数字,它的各个数位相加能够被10整除,则称它为吉利数.现在叫你计算某个区间内有多少个吉利数字. [输入]第 ...
- BZOJ 1833: [ZJOI2010]count 数字计数( dp )
dp(i, j, k)表示共i位, 最高位是j, 数字k出现次数. 预处理出来. 差分答案, 对于0~x的答案, 从低位到高位进行讨论 -------------------------------- ...
随机推荐
- LeetCode24 两两交换链表中的节点
给定一个链表,两两交换其中相邻的节点,并返回交换后的链表. 示例: 给定 1->2->3->4, 你应该返回 2->1->4->3. 说明: 你的算法只能使用常数的 ...
- --safe-user-create
此参数如果启用,用户将不能用grant语句创建新用户,除非用户有mysql数据库中user表的insert权限, ./mysqld_safe --safe-user-create & 用-- ...
- java锁的对象引用
当访问共享的可变数据时,通常需要同步.一种避免使用同步的方式就是不共享数据. 如果数据仅在单线程内访问,就不需要同步,这种技术称为"线程封闭",它是实现线程安全性最简单方式之一. ...
- kafka(二)基本使用
一.Kafka线上集群部署方案 既然是集群,那必然就要有多个Kafka节点机器,因为只有单台机器构成的kafka伪集群只能用于日常测试之用,根本无法满足实际的线上生产需求. 操作系统: kafka由S ...
- 痞子衡嵌入式:MCUBootFlasher v3.0发布,为真实的产线操作场景而生
-- 痞子衡维护的NXP-MCUBootFlasher工具(以前叫RT-Flash)距离上一个版本(v2.0.0)发布过去一年半以上了,这一次痞子衡为大家带来了全新版本v3.0.0,从这个版本开始,N ...
- Core3.1 微信v3 JSAPI支付
1.前言 "小魏呀,这个微信支付还要多久?","快了快了老板,就等着最后一步了...","搞快点哈,就等着上线呢","...... ...
- 卷积神经网络学习笔记——SENet
完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和SE ...
- ATtiny3217 x WS2812B梦幻联动
TinyAVR 1-series是Microchip于2018年推出的AVR单片机系列,定位是新一代的8位单片机,ATtiny3217是其中最高端的一款.相比于ATmega328P那个时代的AVR,A ...
- 从定义到AST及其遍历方式,一文带你搞懂Antlr4
摘要:本文将首先介绍Antlr4 grammer的定义方式,如何通过Antlr4 grammer生成对应的AST,以及Antlr4 的两种AST遍历方式:Visitor方式和Listener方式. 1 ...
- Soul 网关 Nacos 数据同步源码解析
学习目标: 学习Soul 网关 Nacos 数据同步源码解析 学习内容: 环境配置 Soul 网关 Nacos 数据同步基本概念 源码分析 学习时间:2020年1月28号 早7点 学习产出: 环境配置 ...