公式

$$C_n^m\%p=C_{n/p}^{m/p}*C_{n\%p}^{m\%p}\%p~~(p为素数)$$

代码如下

typedef long long ll;
ll mod_pow(ll x, ll n, ll mod)
{
ll res = 1;
while (n > 0)
{
if (n & 1)
res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
ll comb(ll n, ll m, ll p)
{
if (m > n)
return 0;
ll a = 1, b = 1;
m = min(n - m, m);
while(m)
{
a = (a * n--) % p;
b = (b * m--) % p;
}
return a * mod_pow(b, p - 2, p) % p;
}
ll Lucas(ll n, ll m, ll p)
{
if (m == 0)
return 1;
return comb(n % p, m % p, p) * Lucas(n / p, m / p, p) % p;
}

例题

HDU 3037

解析:m个相同的豆子,放到n个不同的树里,有多少种方法。有$C_{n+m}^m$种。具体详解请看下面的扩展中的插板法。

代码如下:

#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
ll mod_pow(ll x, ll n, ll mod)
{
ll res = 1;
while (n > 0)
{
if (n & 1)
res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
ll comb(ll n, ll m, ll p)
{
if (m > n)
return 0;
ll a = 1, b = 1;
m = min(n - m, m);
while(m)
{
a = (a * n--) % p;
b = (b * m--) % p;
}
return a * mod_pow(b, p - 2, p) % p;
}
ll Lucas(ll n, ll m, ll p)
{
if (m == 0)
return 1;
return comb(n % p, m % p, p) * Lucas(n / p, m / p, p) % p;
}
int main(int argc, char* argv[])
{
ios::sync_with_stdio(false);
cin.tie(0);
ll T, n, m, p;
cin >> T;
while (T--)
{
cin >> n >> m >> p;
cout << Lucas(n + m, m, p) << endl;
}
return 0;
}

扩展

插板法

适用类型

一组相同的元素,分成若干不同的组,每组至少一个元素。

例题1

将8个相同的小球放到3个不同的盒子,每个盒子至少放一个球,一共有多少种方法。

解:8个盒子,有7个空,分到3个盒子,需要插2块板,$C_7^2=21$种。

对于不满足每组至少一个元素条件的,应该先转化为标准形式。

例题2

将8个相同的小球放到3个不同的盒子,每个盒子至少放两个球,一共有多少种方法。

解析:先往每一个盒子里放一个小球。转化为:5个相同的小球放到不同的盒子,每个盒子至少放1个小球,一共有多少种方法。$C_4^2=6$种。

例题3

将8个相同的小球放到3个不同的盒子,有多少种方法。

解析:我们先让每个盒子吐出1个球,使得每个盒子至少一个球,分球的时候再让盒子吃回去。转化为:11个相同的球放到3个不同的盒子中,每个盒子至少一个,有多少种方法。$C_{10}^2=45$种。

例题4

$a+b+c=10$有多少组正整数解。

解析:转化为:10个相同的小球,放到不同的3个盒子中,每个盒子至少一个,有多少方法。$C_9^2=36$种。

例题5

$a+b+c=10$有多少组非负整数解。

解析:转化为:13个相同的小球,放到不同的3个盒子中,有多少方法。$C_{12}^2=66$种。

例题6

$a+b+c\leqslant 10$有多少组非负整数解。

解析1:转化为$a+b+c+d =10$,即10个相同的球,放到4个不同的盒子中,有多少方法。$C_{13}^3=286$种。

解析2:列举所有情况:$a+b+c=0(C_2^2)$,$a+b+c=1(C_3^2)$,$\cdots$,$a+b+c=10(C_{12}^2)$,$\sum\limits_{i=2}^{12}C_i^2=C_{13}^3=286$种。

注:$\sum\limits_{i=m}^nC_i^m=C_{n+1}^{m+1}$。

杨辉三角性质之一:斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。

Lucas(卢卡斯)定理的更多相关文章

  1. Lucas 卢卡斯定理

    Lucas: 卢卡斯定理说白了只有一条性质 $$ C^n_m \equiv C^{n/p}_{m/p} \times C^{n \bmod p}_{m \bmod p} \ (mod \ \ p) $ ...

  2. CRT中国剩余定理 &amp; Lucas卢卡斯定理

    数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainde ...

  3. Lucas卢卡斯定理

    当$p$为素数时 $$C_n^m\equiv C_{n/p}^{m/p}*C_{n\%p}^{m\%p}(mod\ p)$$ 设$n=s*p+q,m\equiv t*p+r(q,r<=p)$ 我 ...

  4. 卢卡斯定理 Lucas (p为素数)

    证明摘自:(我网上唯一看得懂的证明) https://blog.csdn.net/alan_cty/article/details/54318369 结论:(显然递归实现)lucas(n,m)=luc ...

  5. 卢卡斯定理Lucas

    卢卡斯定理Lucas 在数论中,\(Lucas\)定理用于快速计算\(C^m_n ~ \% ~p\),即证明\(C^m_n = \prod_{i = 0} ^kC^{m_i}_{n_i}\)其中\(m ...

  6. 数论篇7——组合数 &amp; 卢卡斯定理(Lucas)

    组合数 组合数就是高中排列组合的知识,求解组合数C(n,m),即从n个相同物品中取出m个的方案数. 求解方式 求解通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\righ ...

  7. Lucas(卢卡斯)定理

    Lucas定理 对于C(m,n)%P(P是质数)这样的问题,可以通过预处理阶乘和阶乘的逆元,来快速计算.但是当m,n大于P时,就不能保证m,n与P互质了,但不互质的情况下,乘法逆元不存在,此时就需要卢 ...

  8. 【BZOJ4403】序列统计(组合数学,卢卡斯定理)

    [BZOJ4403]序列统计(组合数学,卢卡斯定理) 题面 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取 ...

  9. 【Luogu3807】【模板】卢卡斯定理(数论)

    题目描述 给定\(n,m,p(1≤n,m,p≤10^5)\) 求 \(C_{n+m}^m mod p\) 保证\(P\)为\(prime\) \(C\)表示组合数. 一个测试点内包含多组数据. 输入输 ...

  10. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

随机推荐

  1. css 去除点击之后的虚线

    链接在被点击时会出现虚线框,即使松开了也仍然存在,在有的时候显得不美观.既然不好看,那就不要它.怎样去掉呢? 方法一 IE下可使用其私有的html属性:hideFoucs,在标签的结构中加入hidef ...

  2. mig_ddr4_ultrascale

    http://china.xilinx.com/support/documentation-navigation/design-hubs/dh0061-ultrascale-memory-interf ...

  3. wind10系统 Atheros AR9271 Wireless Network Adapter USBwifi无线网卡的驱动安装解决无法搜索wifi信号,连接wifi信号无法上网的问题

    一.解决无法搜索wifi信号的问题 卸载掉之前的驱动,上网下载其他的驱动程序安装. http://drivers.mydrivers.com/drivers/463_185289.htm 二.安装完后 ...

  4. leetcode day8

    [83] Remove Duplicates from Sorted List Given a sorted linked list, delete all duplicates such that ...

  5. CodeForces839-B. Game of the Rows-水题(贪心)

    最近太zz了,老是忘记带脑子... 补的以前的cf,发现脑子不好使...   B. Game of the Rows time limit per test 1 second memory limit ...

  6. Kafka基本知识回顾及复制

    Producers发布记录到集群,集群维护这些记录并且将记录分发给Consumers. 在Kafka中,最关键的抽象是topic.Producers发布记录到一个topic,Consumers订阅一个 ...

  7. 1026. Table Tennis (30)

    题目如下: A table tennis club has N tables available to the public. The tables are numbered from 1 to N. ...

  8. 时区提示:Local time zone must be set--see zic manual page 2018的解决办法

    问题描述:在centos服务器上执行date命令时,显示的时间信息中的时区不正常,如下: [root@ulocalhost ~]# date Mon Apr 9 02:57:38 Local time ...

  9. zookeeper开发

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 zookeeper-3.4.11 ZK客户端操作命令: #登 ...

  10. 【Python31--pickle函数】

    一.含义 1.pickle的实质是什么 答:利用一些算法把数据对象转换成“二进制文件”,存储在硬盘上,当然也可以放在数据库或者是另外一台计算机上 2.存放:picking,读取:unpicking 3 ...