LINK:数列求和

每次遇到这种题目都不太会写。但是做法很简单.

终有一天我会成功的。

考虑类似等比数列求和的东西 帽子戏法一下.

设\(f(k)=\sum_{i=1}^ni^ka^i\)

考虑\(af(k)\)这个式子 两式做差.

\((a-1)f(k)=n^n\cdot a^{n+1}-a+\sum_{i=2}^n{a^i((i-1)^k-i^k)}\)

右边直接二项式展开 然后 交换求和顺序可得.

\((a-1)f(k)=n^k\cdot a^{n+1}-a+\sum_{j=0}^{k-1}C(k,j)(-1)^{k-j}(f_j-a)\)

然后除以a-1就可以\(k^2\)推了.

注意a==1时 也可以类似这样推式子 不过 直接拉格朗日插值就最简单的做法。

code
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cctype>
#include<queue>
#include<deque>
#include<stack>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 10000000000000000ll
#define inf 1000000000
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(p,n,i) for(RE ll i=p;i<=n;++i)
#define go(x) for(ll i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE ll i=n;i>=p;--i)
#define vep(p,n,i) for(RE ll i=p;i<n;++i)
#define pii pair<ll,ll>
#define mk make_pair
#define RE register
#define P 1000000007ll
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-10
#define sq sqrt
#define S second
#define F first
#define mod 1000000007
using namespace std;
char *fs,*ft,buf[1<<15];
inline char gc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline ll read()
{
RE ll x=0,f=1;RE char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f; }
const ll MAXN=2010;
ll n,k,a;
ll f[MAXN],fac[MAXN],inv[MAXN];
inline ll ksm(ll b,ll p)
{
ll cnt=1;
while(p)
{
if(p&1)cnt=cnt*b%mod;
b=b*b%mod;p=p>>1;
}
return cnt;
}
inline ll C(ll a,ll b){return a<b?0:fac[a]*inv[b]%mod*inv[a-b]%mod;}
inline ll lag(ll x,ll n)
{
ll ans=0;x%=mod;
rep(1,n,i)
{
ll sum=1,ww=1;
f[i]=(f[i-1]+ksm(i,k))%mod;
rep(1,n,j)
{
if(i==j)continue;
sum=sum*(x-j)%mod;
ww=ww*(i-j)%mod;
}
sum=sum*ksm(ww,mod-2)%mod;
ans=(ans+f[i]*sum)%mod;
}
return (ans+mod)%mod;
}
inline void solve_1()
{
putl(lag(n,k+2));
}
inline void solve_2()
{
fac[0]=1;
rep(1,k,i)fac[i]=fac[i-1]*i%mod;
inv[k]=ksm(fac[k],mod-2);
fep(k-1,0,i)inv[i]=inv[i+1]*(i+1)%mod;
ll IN=ksm(a-1,mod-2),cc;
f[0]=((cc=ksm(a,(n+1)%(mod-1)))-a)*IN%mod;
n%=mod;
rep(1,k,i)
{
cc=cc*n%mod;ll ans=cc-a;
rep(0,i-1,j)ans=(ans+C(i,j)*((i-j)&1?-1:1)*(f[j]-a))%mod;
f[i]=ans*IN%mod;
}
putl((f[k]+mod)%mod);
}
signed main()
{
//freopen("1.in","r",stdin);
get(n);get(a);get(k);
if(a==1)solve_1();
else solve_2();
return 0;
}

luogu P4948 数列求和 推式子 简单数学推导 二项式 拉格朗日插值的更多相关文章

  1. 【Luogu】【关卡2-11】简单数学问题(2017年10月)【还差三道题】

    火星人 麦森数 P1403 [AHOI2005]约数研究 f(n)表示n的约数个数,现在给出n,要求求出f(1)到f(n)的总和. 解答:有几个1做约数的个数 = n /1; 有几个2做约数的个数 = ...

  2. 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导

    来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...

  3. BNU27945——整数边直角三角形——————【简单数学推导】

    整数边直角三角形 Time Limit: 1000ms Memory Limit: 65536KB 64-bit integer IO format: %lld      Java class nam ...

  4. 【XSY1537】五颜六色的幻想乡 数学 生成树计数 拉格朗日插值

    题目大意 ​ 有一个\(n\)个点\(m\)条边的图,每条边有一种颜色\(c_i\in\{1,2,3\}\),求所有的包括\(i\)条颜色为\(1\)的边,\(j\)条颜色为\(2\)的边,\(k\) ...

  5. P3768 简单的数学题 杜教筛+推式子

    \(\color{#0066ff}{ 题目描述 }\) 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ij ...

  6. 解题报告:luogu P5745 【深基附B例】数列求和

    题目链接:P5745 [深基附B例]数列求和 现在想说:\(O(N)\)的题要不怎么也想不出来,要不灵光乍现,就像这道题. 我们维护一个类似单调队列的加法单调队列: 若相加大于此数,就将队尾元素弹出, ...

  7. 洛谷试炼场-简单数学问题-P1403 [AHOI2005]-因数

    洛谷试炼场-简单数学问题 P1403 [AHOI2005]约数研究 Description 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机"Samuel I ...

  8. luogu 1327 数列排序 & 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 J题 循环节

    luogu 1327 数列排序 题意 给定一个数列\(\{an\}\),这个数列满足\(ai≠aj(i≠j)\),现在要求你把这个数列从小到大排序,每次允许你交换其中任意一对数,请问最少需要几次交换? ...

  9. ZOJ3329(数学推导+期望递推)

    要点: 1.期望的套路,要求n以上的期望,则设dp[i]为i分距离终点的期望步数,则终点dp值为0,答案是dp[0]. 2.此题主要在于数学推导,一方面是要写出dp[i] = 什么,虽然一大串但是思维 ...

随机推荐

  1. 状压DP之LGTB 与序列

    题目 思路 这道题竟然是状压DP,本人以为是数论,看都没看就去打下一题的暴力了,哭 \(A_i\)<=30,所以我们只需要考虑1-58个数,再往后选的话还不如选1更优,注意,1是可以重复选取的, ...

  2. Xenon's Attack on the Gangs(树规)

    题干 Input Output Example Test 1: Test 2: 3 5 1 2 1 2 2 3 1 3 1 4 3 5 3 10 Tips 译成人话 给n个结点,n-1条无向边.即一棵 ...

  3. Spring-Validation(数据校验) 你值得拥有

    前言 最近看到很多童鞋在项目中的对请求参数的校验都用的if来判断各参数的属性,如: if(StringUtils.isBlank(username)){ return RR.exception(&qu ...

  4. web 部署专题(一):Gunicorn运行与配置方法

    Gunicorn“绿色独角兽”是一个被广泛使用的高性能的Python WSGI UNIX HTTP服务器,移植自Ruby的独角兽(Unicorn )项目,使用pre-fork worker模式,具有使 ...

  5. javascript基础(四): 操作表单

    表单是什么?form-----DOM树 文本框----text 下拉框----select 单选框----radio 多选框----checkbox 隐藏域----hidden 密码框----pass ...

  6. CRM【第二篇】: stark组件

    介绍: stark组件,是一个帮助开发者快速实现数据库表的增删改查+的组件.目标: 10s 中完成一张表的增删改查. 前戏: django项目启动时,自定义执行某个py文件. django启动时,且在 ...

  7. hihoCoder 1062 最近公共祖先·一 最详细的解题报告

    题目来源:最近公共祖先·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 题目描述 小Ho最近发现了一个神奇的网站!虽然还不够像58同城那样神奇,但这个网站仍然让小Ho乐在其 ...

  8. Angular 懒加载找不到模块问题解决方法

    问题: 懒加载无法找到模块 解决办法: 在app-routing.module.ts中引入该模块

  9. 微信小程序热更新,小程序提示版本更新,版本迭代,强制更新,微信小程序版本迭代

    相信很多人在做小程序的时候都会有迭代每当版本迭代的时候之前老版本的一些方法或者显示就不够用了这就需要用到小程序的热更新.或者说是提示升级小程序版本 editionUpdate:function(){ ...

  10. PowerShell创建参考窗口

    背景 平常我们经常遇到这样一个问题,在使用一个窗口工作时常常需要参考其他窗口的文字或图片,此时就需要频繁切换窗口:或者是看视频时需要参考前面进度的画面:或者是阅读或写文档时需要参考其他位置的文字,这时 ...