LINK:数列求和

每次遇到这种题目都不太会写。但是做法很简单.

终有一天我会成功的。

考虑类似等比数列求和的东西 帽子戏法一下.

设\(f(k)=\sum_{i=1}^ni^ka^i\)

考虑\(af(k)\)这个式子 两式做差.

\((a-1)f(k)=n^n\cdot a^{n+1}-a+\sum_{i=2}^n{a^i((i-1)^k-i^k)}\)

右边直接二项式展开 然后 交换求和顺序可得.

\((a-1)f(k)=n^k\cdot a^{n+1}-a+\sum_{j=0}^{k-1}C(k,j)(-1)^{k-j}(f_j-a)\)

然后除以a-1就可以\(k^2\)推了.

注意a==1时 也可以类似这样推式子 不过 直接拉格朗日插值就最简单的做法。

code
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cctype>
#include<queue>
#include<deque>
#include<stack>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 10000000000000000ll
#define inf 1000000000
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(p,n,i) for(RE ll i=p;i<=n;++i)
#define go(x) for(ll i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE ll i=n;i>=p;--i)
#define vep(p,n,i) for(RE ll i=p;i<n;++i)
#define pii pair<ll,ll>
#define mk make_pair
#define RE register
#define P 1000000007ll
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-10
#define sq sqrt
#define S second
#define F first
#define mod 1000000007
using namespace std;
char *fs,*ft,buf[1<<15];
inline char gc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline ll read()
{
RE ll x=0,f=1;RE char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f; }
const ll MAXN=2010;
ll n,k,a;
ll f[MAXN],fac[MAXN],inv[MAXN];
inline ll ksm(ll b,ll p)
{
ll cnt=1;
while(p)
{
if(p&1)cnt=cnt*b%mod;
b=b*b%mod;p=p>>1;
}
return cnt;
}
inline ll C(ll a,ll b){return a<b?0:fac[a]*inv[b]%mod*inv[a-b]%mod;}
inline ll lag(ll x,ll n)
{
ll ans=0;x%=mod;
rep(1,n,i)
{
ll sum=1,ww=1;
f[i]=(f[i-1]+ksm(i,k))%mod;
rep(1,n,j)
{
if(i==j)continue;
sum=sum*(x-j)%mod;
ww=ww*(i-j)%mod;
}
sum=sum*ksm(ww,mod-2)%mod;
ans=(ans+f[i]*sum)%mod;
}
return (ans+mod)%mod;
}
inline void solve_1()
{
putl(lag(n,k+2));
}
inline void solve_2()
{
fac[0]=1;
rep(1,k,i)fac[i]=fac[i-1]*i%mod;
inv[k]=ksm(fac[k],mod-2);
fep(k-1,0,i)inv[i]=inv[i+1]*(i+1)%mod;
ll IN=ksm(a-1,mod-2),cc;
f[0]=((cc=ksm(a,(n+1)%(mod-1)))-a)*IN%mod;
n%=mod;
rep(1,k,i)
{
cc=cc*n%mod;ll ans=cc-a;
rep(0,i-1,j)ans=(ans+C(i,j)*((i-j)&1?-1:1)*(f[j]-a))%mod;
f[i]=ans*IN%mod;
}
putl((f[k]+mod)%mod);
}
signed main()
{
//freopen("1.in","r",stdin);
get(n);get(a);get(k);
if(a==1)solve_1();
else solve_2();
return 0;
}

luogu P4948 数列求和 推式子 简单数学推导 二项式 拉格朗日插值的更多相关文章

  1. 【Luogu】【关卡2-11】简单数学问题(2017年10月)【还差三道题】

    火星人 麦森数 P1403 [AHOI2005]约数研究 f(n)表示n的约数个数,现在给出n,要求求出f(1)到f(n)的总和. 解答:有几个1做约数的个数 = n /1; 有几个2做约数的个数 = ...

  2. 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导

    来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...

  3. BNU27945——整数边直角三角形——————【简单数学推导】

    整数边直角三角形 Time Limit: 1000ms Memory Limit: 65536KB 64-bit integer IO format: %lld      Java class nam ...

  4. 【XSY1537】五颜六色的幻想乡 数学 生成树计数 拉格朗日插值

    题目大意 ​ 有一个\(n\)个点\(m\)条边的图,每条边有一种颜色\(c_i\in\{1,2,3\}\),求所有的包括\(i\)条颜色为\(1\)的边,\(j\)条颜色为\(2\)的边,\(k\) ...

  5. P3768 简单的数学题 杜教筛+推式子

    \(\color{#0066ff}{ 题目描述 }\) 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ij ...

  6. 解题报告:luogu P5745 【深基附B例】数列求和

    题目链接:P5745 [深基附B例]数列求和 现在想说:\(O(N)\)的题要不怎么也想不出来,要不灵光乍现,就像这道题. 我们维护一个类似单调队列的加法单调队列: 若相加大于此数,就将队尾元素弹出, ...

  7. 洛谷试炼场-简单数学问题-P1403 [AHOI2005]-因数

    洛谷试炼场-简单数学问题 P1403 [AHOI2005]约数研究 Description 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机"Samuel I ...

  8. luogu 1327 数列排序 & 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 J题 循环节

    luogu 1327 数列排序 题意 给定一个数列\(\{an\}\),这个数列满足\(ai≠aj(i≠j)\),现在要求你把这个数列从小到大排序,每次允许你交换其中任意一对数,请问最少需要几次交换? ...

  9. ZOJ3329(数学推导+期望递推)

    要点: 1.期望的套路,要求n以上的期望,则设dp[i]为i分距离终点的期望步数,则终点dp值为0,答案是dp[0]. 2.此题主要在于数学推导,一方面是要写出dp[i] = 什么,虽然一大串但是思维 ...

随机推荐

  1. 【Java8新特性】冰河带你看尽Java8新特性,你想要的都在这儿了!!(文本有福利)

    写在前面 很多小伙伴留言说,冰河你能不能写一些关于Java8的文章呢,看书看不下去,看视频进度太慢.好吧,看到不少读者对Java8还是比较陌生的,那我就写一些关于Java8的文章吧,希望对大家有所帮助 ...

  2. 什么是DevOps?该如何正确的在企业内进行实践

    传统IT技术团队中通常都有多个独立的组织-开发团队.测试团队和运维团队.开发团队进行软件开发.测试团队进行软件测试,运维团队致力于部署,负载平衡和发布管理. 他们之间的职能有时重叠.有时依赖.有时候会 ...

  3. OldTrafford after 102 days

    THE RED GO MARCHING ON   One Team One Love Through the highs and the lows   One hundred and two long ...

  4. POJ3057 Evacuation 二分图匹配+最短路

    POJ3057 Evacuation 二分图匹配+最短路 题目描述 Fires can be disastrous, especially when a fire breaks out in a ro ...

  5. Java入门基础学习,成为一个Java程序员的必备知识

    引言 众所周知,Java是一种面向对象的编程语言.您可以在Windows操作系统上编写Java源代码,而在Linux操作系统上运行编译后的字节码,而无需修改源代码. 数据类型 Java 有 2 种数据 ...

  6. day12 文件操作(下)

    目录 一.x模式(控制文件操作模式,与rwa同级) 1 特点 2 格式 二.b模式(控制文件读写内容的模式,与t同级) 1.b模式和t模式的区别 2 b模式应用 3 循环读取文件 三.文件操作的其他方 ...

  7. 纯 CSS 实现滑动轮播图效果

    只使用css实现轮播图简单的操作 <!DOCTYPE html> <html lang="en"> <head> <meta charse ...

  8. REACT——虚拟DOM

    深入了解虚拟DOM 实际顺序 jsx->createElemnt ->虚拟DOM(JS 对象)->真实DOM 虚拟DOM中的Diff算法 :当react查找差异的时候,就会采用dif ...

  9. bzoj3289Mato的文件管理

    bzoj3289Mato的文件管理 题意: 一共有n份资料,每天随机选一个区间[l,r],Mato按文件从小到大的顺序看编号在此区间内的这些资料.他先把要看的文件按编号顺序依次拷贝出来,再用排序程序给 ...

  10. Pycharm无法安装第三方库,错误代码Non-zero exit code (1) 的解决方案之pip升级

    软件测试,B站爱码小哥邀你同行! 进入主题 问题场景:在pycharm进行安装某些库,install失败,提示需要升级pip ,报错界面问题如下错误代码Non-zero exit code 大致意思是 ...