LINK:舞蹈链

具体复杂度我也不知道 但是 搜索速度极快.

原因大概是因为 每次检索的时间少 有一定的剪枝.

花了2h大概了解了这个东西 吐槽一下题解根本看不懂 只能理解大概的想法 核心的链表不太懂.

于是直接看代码了 应该算是把代码给理解了 于是就懂了链表是怎么操作的。

首先 对于列先建立一个循环链表 r[0]==0时 说明所有的列被填完.

没必要建立0的点 因为没有什么用 只需要知道1在哪即可。

对于1的结点新建结点 然后这些结点组成一个双向十字链表 注意和上面那个循环链表不连在一起.

这个循环链表容易建立 值得一提的是需要检索列的链表 所以需要在列的链表头处加一个标号 使得能够找到.

而横排则不需要 直接利用列就可以找到.

下面是删除.

找到一列之后 随便找一行 删除当前行 同时意味着 当前行上所有1的位置所在列被删掉.

考虑删掉列的操作 这些列所在的行要被删掉 所以再枚举行 删掉列.

回溯的时候 也很容易还原.

这样进行搜索即可.

理解海星 下次再加深理解好了.

const int MAXN=5510;
int n,m,cnt,ans;
int ans1[MAXN];
int l[MAXN],r[MAXN],col[MAXN],row[MAXN],u[MAXN],d[MAXN],h[MAXN],s[MAXN];
inline void prepare()
{
rep(0,m,i)
{
r[i]=i+1;
l[i]=i-1;
u[i]=d[i]=i;
}
r[m]=0;l[0]=m;
memset(h,-1,sizeof(h));
memset(s,0,sizeof(s));
cnt=m+1;
}
inline void Link(int x,int y)
{
++s[y];//某一列的结点个数. row[cnt]=x;col[cnt]=y; u[cnt]=y;d[cnt]=d[y];//显然这个地方是纵向循环链表.
u[d[y]]=cnt;d[y]=cnt; if(h[x]==-1)h[x]=r[cnt]=l[cnt]=cnt;
else
{
r[cnt]=h[x];//显然这个地方是横向循环链表.
l[cnt]=l[h[x]];//容易得到h[x]表示当前行的首结点 同时也是末结点.
r[l[h[x]]]=cnt;
l[h[x]]=cnt;
}
++cnt;
}
inline void remove(int y)
{
r[l[y]]=r[y];l[r[y]]=l[y];
for(int i=d[y];i!=y;i=d[i])
{
for(int j=r[i];j!=i;j=r[j])
{
u[d[j]]=u[j];
d[u[j]]=d[j];
--s[col[j]];
}
}
}
inline void resume(int y)
{
for(int i=u[y];i!=y;i=u[i])
{
for(int j=l[i];j!=i;j=l[j])
{
u[d[j]]=j;
d[u[j]]=j;
++s[col[j]];
}
}
r[l[y]]=y;l[r[y]]=y;
}
inline void dance(int dep)
{
if(r[0]==0)
{
rep(1,dep-1,i)put_(ans1[i]);
exit(0);
}
int y=r[0];
for(int i=r[0];i;i=r[i])if(s[i]<s[y])y=i;
remove(y);
for(int i=d[y];i!=y;i=d[i])
{
ans1[dep]=row[i];
for(int j=r[i];j!=i;j=r[j])remove(col[j]);
dance(dep+1);
for(int j=l[i];j!=i;j=l[j])resume(col[j]);
}
resume(y);
}
int main()
{
freopen("1.in","r",stdin);
get(n);get(m);prepare();
rep(1,n,i)
{
rep(1,m,j)
{
int get(op);
if(op)Link(i,j);
}
}
dance(1);puts("No Solution!");
return 0;
}

luogu P4929 【模板】舞蹈链 DLX的更多相关文章

  1. 舞蹈链 DLX

    欢迎访问——该文出处-博客园-zhouzhendong 去博客园看该文章--传送门 舞蹈链是一个非常玄学的东西…… 问题模型 精确覆盖问题:在一个01矩阵中,是否可以选出一些行的集合,使得在这些行的集 ...

  2. [luogu P3384] [模板]树链剖分

    [luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点 ...

  3. [学习笔记] 舞蹈链(DLX)入门

    "在一个全集\(X\)中若干子集的集合为\(S\),精确覆盖(\(\boldsymbol{Exact~Cover}\))是指,\(S\)的子集\(S*\),满足\(X\)中的每一个元素在\( ...

  4. POJ3740 Easy Finding 舞蹈链 DLX

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目 精确覆盖问题模板题 算法 DLX算法 学习DLX算法--传送门 代码 #include <cstring> ...

  5. P4929-[模板]舞蹈链(DLX)

    正题 题目链接:https://www.luogu.com.cn/problem/P4929 题目大意 \(n*m\)的矩形有\(0/1\),要求选出若干行使得每一列有且仅有一个\(1\). 解题思路 ...

  6. Vijos1755 靶形数独 Sudoku NOIP2009 提高组 T4 舞蹈链 DLX

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目(传送门) 题意概括 给出一个残缺的数独,求这个数独中所有的解法中的最大价值. 一个数独解法的价值之和为每个位置所填的数值 ...

  7. POJ3076 Sudoku 舞蹈链 DLX

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目(传送门) 题意概括 给出一个残缺的16*16数独,求解. 题解 DLX + 矩阵构建  (两个传送门) 学完这个之后,再 ...

  8. POJ3074 Sudoku 舞蹈链 DLX

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目(传送门) 题意概括 给出一个残缺的数独,求解. 题解 DLX + 矩阵构建  (两个传送门) 代码 #include & ...

  9. POJ2676 Sudoku 舞蹈链 DLX

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目(传送门) 题意概括 给出一个残缺的数独,求解.SPJ 题解 DLX + 矩阵构建  (两个传送门) 代码 #includ ...

随机推荐

  1. ansible 2.7 API

    # coding:utf-8 # @Time : 2019-01-14 15:22 # @Author : 小贰 # @FileName: ansible_sync_hosts.py # @funct ...

  2. BUUCTF-Misc-No.1

    # BUUCTF-Misc # 签到 flag{buu_ctf} 金三胖 说实话直接看出来flag{he11ohongke} 二维码 直接binwalk扫一下,-e分离就出来一个带锁的zip爆破一下就 ...

  3. python入门009

    目录 四.列表 1.定义:在[]内,用逗号分隔开多个任意数据类型的值 2.类型转换:但凡能被for循环遍历的数据类型都可以传给list()转换成列表类型,list()会跟for循环一样遍历出数据类型中 ...

  4. java 数据结构(四):java常用类四 比较器以及其他类

    比较器 1.Java比较器的使用背景: Java中的对象,正常情况下,只能进行比较:== 或 != .不能使用 > 或 < 的但是在开发场景中,我们需要对多个对象进行排序,言外之意,就需要 ...

  5. VMWare WorkStation中MacOS虛擬機無法啓動的問題

    關於MacOS虛擬機,在有VMWare重裝,升級以及MacOS更新時,都可能會造成破解補丁失效,因此儅Mac虛擬機無法啓動時,可以嘗試以下操作: 重新運行unlocker208中的win-instal ...

  6. 【面试题资源共享】一文总结最高频软件测试|sq|语句|思维发散|计算机基础|Linux|测试用例|接口测试|等技术面试题

    思维发散 1.一个球, -把尺子长度是球直径的2/3,怎样测出半径?2.四枚硬币,花面朝上,每次翻转三个,几次可以将四枚硬币变为字面朝上?3. U2合唱团在1 7分钟内赶到演唱会现场问题?4.小明一家 ...

  7. 软件测试大牛都是这样写测试用例的,你get到了嘛?

    1. 用于语句覆盖的基路径法 基路径法保证设计出的测试用例,使程序的每一个可执行语句至少执行一次,即实现语句覆盖.基路径法是理论与应用脱节的典型,基本上没有应用价值,读者稍作了解即可,不必理解和掌握. ...

  8. Python Ethical Hacking - VULNERABILITY SCANNER(1)

    HTTP REQUESTS BASIC INFORMATION FLOW The user clicks on a link. HTML website generates a request(cli ...

  9. 【Redis学习专题】- Redis主从+哨兵集群部署

    集群版本: redis-4.0.14 集群节点: 节点角色 IP redis-master 10.100.8.21 redis-slave1 10.100.8.22 redis-slave2 10.1 ...

  10. [日常摘要] -- 阻塞IO与非阻塞IO篇

    NIO操作过程 非阻塞读/写操作 读-- 从通道读取数据到buffer,同时可以继续做别的事情,但数据都到buffer之后,线程再继续处理数据 写-- 一个线程请求写入一些数据到某通道,但不需要等待它 ...