先考虑对于一个序列,能使其可以删空的的修改次数。

首先可以发现,序列的排列顺序是没有影响的,所以可以将所有数放到桶里来处理。

尝试对一个没有经过修改的可以删空的序列来进行删数,一开始删去所有的\(n\),然后序列长度变为\(x_1\),删去所有的\(x_1\),然后序列长度变为\(x_2\),删去所有的\(x_2\)……直到对于一个长度为\(x_i\)的序列,其中没有\(x_i\)这个数,那么此时就要对序列执行修改操作了。

考虑过程,当不能连续的删数时,就需要通过修改来填补空缺。实际上,对\([1,n]\)做前缀和,存在数字的位置需满足该位置的值等于该位置的下标,不然就需进行修改。

可以发现对于\([1,n]\)的每个出现的数字,从其往前覆盖一条长度为该数出现次数的线段,区间\([1,n]\)未被覆盖的位置个数即为需要修改的次数。

可以通过线段树来维护最小值的个数来统计未被覆盖的位置个数。

考虑加上修改操作,单点修改直接改修改前后两个数的贡献即可,整体加减可以对线段树的询问加上偏移量,比如当整体加一时,偏移量减一,询问的区间向左移动。

然后对于一些不在当前询问区间的数字的贡献需要忽略,我的处理是在询问区间右边的数字就不再计算贡献。

\(code:\)

#include<bits/stdc++.h>
#define maxn 2000010
#define all 450000
#define ls (cur<<1)
#define rs (cur<<1|1)
#define mid ((l+r)>>1)
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,m,root=1,delta=150000;
int a[maxn],cnt[maxn],add[maxn];
struct node
{
int mi,cnt;
}t[maxn];
node operator +(const node &a,const node &b)
{
if(a.mi<b.mi) return a;
if(a.mi>b.mi) return b;
return (node){a.mi,a.cnt+b.cnt};
}
void pushadd(int cur,int v)
{
t[cur].mi+=v,add[cur]+=v;
}
void pushdown(int cur)
{
if(!add[cur]) return;
pushadd(ls,add[cur]),pushadd(rs,add[cur]),add[cur]=0;
}
void build(int l,int r,int cur)
{
if(l==r)
{
t[cur]=(node){0,1};
return;
}
build(l,mid,ls),build(mid+1,r,rs),t[cur]=t[ls]+t[rs];
}
void modify(int L,int R,int l,int r,int v,int cur)
{
if(L>R) return;
if(L<=l&&R>=r)
{
pushadd(cur,v);
return;
}
pushdown(cur);
if(L<=mid) modify(L,R,l,mid,v,ls);
if(R>mid) modify(L,R,mid+1,r,v,rs);
t[cur]=t[ls]+t[rs];
}
node query(int L,int R,int l,int r,int cur)
{
if(L<=l&&R>=r) return t[cur];
pushdown(cur);
if(R<=mid) return query(L,R,l,mid,ls);
if(L>mid) return query(L,R,mid+1,r,rs);
return query(L,R,l,mid,ls)+query(L,R,mid+1,r,rs);
}
int main()
{
read(n),read(m),build(1,all,root);
for(int i=1;i<=n;++i)
read(a[i]),a[i]+=delta,cnt[a[i]]++;
for(int i=1+delta;i<=n+delta;++i)
modify(i-cnt[i]+1,i,1,all,1,root);
while(m--)
{
int p,x;
read(p),read(x);
if(p)
{
if(a[p]<=n+delta) modify(a[p]-cnt[a[p]]+1,a[p]-cnt[a[p]]+1,1,all,-1,root);
cnt[a[p]]--,x+=delta,cnt[x]++,a[p]=x;
if(x<=n+delta) modify(x-cnt[x]+1,x-cnt[x]+1,1,all,1,root);
}
else
{
if(x==1) p=n+delta,modify(p-cnt[p]+1,p,1,all,-1,root),delta--;
else delta++,p=n+delta,modify(p-cnt[p]+1,p,1,all,1,root);
}
node q=query(1+delta,n+delta,1,all,root);
if(q.mi) puts("0");
else printf("%d\n",q.cnt);
}
return 0;
}

题解 洛谷 P5324 【[BJOI2019]删数】的更多相关文章

  1. 【题解】Luogu P5324 [BJOI2019]删数

    原题传送门 易知这个数列的顺序是不用考虑的 我们看两个数列 \(1,2,3\)和\(3,3,3\)都能删完,再看两个数列\(1,2,3,4\)和\(2,2,4,4\),也都能删完 不难发现,我们珂以把 ...

  2. 【洛谷p1106】删数问题

    (洛谷t2755暂时过不去了) 删数问题[传送门] 洛谷算法标签: emmmm……删数问题又牵扯到了字符串.因为毕竟高精度的数240位呢!要是输入一个整型,要码240行来求出每一位……怕是还没求出来就 ...

  3. 【洛谷P2426】删数

    删数 题目链接 一道裸的区间DP,f[l][r]表示剩下区间[l,r]时的最大价值 可以由f[1~l-1][r]和f[l][r+1~n]转移过来 详见代码: #include<algorithm ...

  4. 【洛谷P1323】删数问题

    删数问题 题目链接 首先找出最小的k个数:用堆每次取出最小的元素p,将p*2+1和p*4+5压入堆. 贪心求最大数:从前往后找第一个data[j+1]>data[j],删除data[j].(链表 ...

  5. luogu P5324 [BJOI2019]删数

    传送门 不如先考虑暴力,能删的序列首先有\(1,2,3...n\),还有就是升序排序后从后往前放数,第\(i\)位要么放\(i\),要么放\(i+1\)位置的数,例如\(1,2,4,4,5,6,9,9 ...

  6. [BJOI2019]删数(线段树)

    [BJOI2019]删数(线段树) 题面 洛谷 题解 按照值域我们把每个数的出现次数画成一根根的柱子,然后把柱子向左推导,\([1,n]\)中未被覆盖的区间长度就是答案. 于是问题变成了单点修改值,即 ...

  7. 洛谷P4587 [FJOI2016]神秘数(主席树)

    题面 洛谷 题解 考虑暴力,对于询问中的一段区间\([l,r]\),我们先将其中的数升序排序,假设当前可以表示出\([1,k]\)目前处理\(a_i\),假如\(a_i>k+1\),则答案就是\ ...

  8. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  9. DP,数论————洛谷P4317 花神的数论题(求1~n二进制中1的个数和)

    玄学代码(是洛谷题解里的一位dalao小粉兔写的) //数位DP(二进制)计算出f[i]为恰好有i个的方案数. //答案为∏(i^f[i]),快速幂解决. #include<bits/stdc+ ...

随机推荐

  1. 程序员如何高效学Python,如何高效用Python挣钱

    本人在1年半之前,不熟悉Python(不过有若干年Java开发基础),由于公司要用Python,所以学习了一通.现在除了能用Python做本职工作外,还出了本Python书,<基于股票大数据分析 ...

  2. html+css快速入门教程(1)

    1 HTML简介 1.1. 什么是HTML?(了解) HTML是超文本标记语言(HyperText Markup Language,HTML)的缩写.是标准通用标记语言(SGML Standard G ...

  3. C#判断某元素是否存在数组中

    string s = "K2:CENTALINE\\lukshing|K2:CENTALINE"; string[] s1 = s.Split('|'); //判断方式是 等于 而 ...

  4. python中 _、__、__xx__() 区别及使用场景

    1.访问权限(private.public)与继承方式(只有public继承) 在面向对象编程语言中,类的属性与方法都会设置访问控制权限,从而满足我们的设计需求.一般而言,我们通常会将对象的属性设置为 ...

  5. C#状态机Stateless

    最近在折腾一些控制相关的软件设计,想起来状态机这个东西,对解决一些控制系统状态切换还是挺有用的. 状态机(有限状态自动机)网上有很多介绍.简单理解就是定义一系列状态,通过一系列的事件,可以使得状态可以 ...

  6. 半导体质量管理_SQM 供应商质量管理

    供应链上的质量保证 SPACE的此附加组件可帮助您与全球生产现场的供应商和分包商更紧密地合作.基于电子分析证书(eCOA,电子分析证书),您可以为整个供应链实施具有约束力的质量标准,并可以对其进行验证 ...

  7. docker 运行镜像

    docker run -e "环境变量=值“ --nam 别名 -v /etc/localtime:/etc/localtime:ro [时区保持跟宿主机器一致]-d -p 21021:80 ...

  8. 记录下 rhel 7 安装MySQL 并重置root密码

    注意官方是很不提倡用root的. 下载并安装MySQL 最新的rpm地址 https://dev.mysql.com/downloads/repo/yum/ #wget https://repo.my ...

  9. Xenon's Attack on the Gangs,题解

    题目: 题意: 有一个n个节点的树,边权为0-n-2,定义mex(a,b)表示除了ab路径上的自然数以外的最小的自然数,求如何分配边权使得所有的mex(a,b)之和最大. 分析: 看似有点乱,我们先不 ...

  10. django框架效率

    1. django ORM模式提供食物处理类:transaction.Django默认的事务处理方式时改动就提交,每执行一次就立即提交,这就会花费大量的时间用于IO.Django也支持所有工作都完成后 ...