给定一个 \(H*W\)的棋盘,棋盘上只有\(N\) 个格子是黑色的,其他格子都是白色的。

在棋盘左上角有一个卒,每一步可以向右或者向下移动一格,并且不能移动到黑色格子中。求这个卒从左上角移动到右下角,一共有多少种可能的路线

\(1\le H,W\le 10^5,1\le N\le 2000\) 输出对\(10^9+7\)取模

H,W巨大,普通DP不用想,考虑如何用黑格子计数

由组合数学知识可知,从S到T的总路径条数为\(C_{H+W-2}^{H-1}\),只要减去至少经过一个黑格子的路径条数即为答案。

那么如何不重不漏的计数呢?

考虑每条至少经过一个黑格子的路径所包含的第一个黑格子,以4号黑格子(4,5)为例,从S到4号,总路径条数有\(C_{4+5-1-1}^{4-1}\)条,只要排除掉经过3和经过1的路径条数即为从S到4,不经过黑格子的路径数。如何排除?其实我们之前已经算出来了,在算S到4的不经过黑格子路径条数时,已经分别算过了S到3,S到1的不经过黑格子路径条数,只要分别乘上由3到4,由1到4的所有路径数即可。

把所有黑色格子按照行列坐标递增的顺序排序,设\(f[i]\) 为从S到第 \(i\)个格子,途中不经过其他黑色格子的路径数

\[f[i] = C_{x_i-1+y_i-1}^{x_i-1} - \sum_{j=1}^{i-1}f[j]*C_{x_i-x_j+y_i-y_j}^{x_i-x_j},其中x_i\ge x_j,y_i\ge x_j
\]

在求解计数类动态规划时,通常要找一个“基准点",围绕这个基准点构造一个不可划分的”整体",以避免子问题之间的重叠

#include <bits/stdc++.h>
using namespace std;
const int mod = 1e9+7;
const int N = 2e5+10;
typedef long long ll;
typedef pair<int,int> pii;
#define fi first
#define se second
ll jc[N],inv[N];
int h,w,n;
ll f[2010];
pii a[2010];
ll ksm(ll a,ll b){
ll res = 1;
for(;b;b>>=1){
if(b & 1)res = res * a % mod;
a = a * a % mod;
}
return res;
}
int C(int x,int y){
return jc[x] * inv[y] %mod * inv[x-y] % mod;
}
int main(){
jc[0] = 1;inv[0] = 1;
for(int i=1;i<N;i++)jc[i] = jc[i-1] * i % mod,inv[i] = ksm(jc[i],mod-2);
scanf("%d%d%d",&h,&w,&n);
for(int i=1;i<=n;i++)scanf("%d%d",&a[i].fi,&a[i].se); sort(a+1,a+1+n);
a[n+1].fi = h;a[n+1].se = w; for(int i=1;i<=n+1;i++){
int x = a[i].fi,y = a[i].se;
f[i] = C(x+y-2,x-1);
for(int j=1;j<i;j++){
int xj = a[j].fi;
int yj = a[j].se;
if(xj > x || yj > y)continue;
f[i] = (f[i] - (ll)f[j] * C(x-xj+y-yj,x-xj)%mod + mod)%mod;
}
}
printf("%lld\n",f[n+1]%mod);
return 0;
}

CF-559C Gerald and Giant Chess(计数DP)的更多相关文章

  1. CF 559C - Gerald and Giant Chess (组合计数)

    \(C_{x+y}^y\)的公式,DP容斥删多余贡献. #include <cstdio> #include <iostream> #include <cstring&g ...

  2. CodeForces 559C Gerald and Giant Chess

    C. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  3. Codeforces 559C Gerald and Giant Chess【组合数学】【DP】

    LINK 题目大意 有一个wxh的网格,上面有n个黑点,问你从(1,1)走到(w,h)不经过任何黑点的方案数 思路 考虑容斥 先把所有黑点按照x值进行排序方便计算 \(dp_{i}\)表示从起点走到第 ...

  4. CF 560e Gerald and Giant Chess

    题意:在h×w的棋盘中从左上角走到右下角,只能向右或向下走,有n个点不可以经过,一共有多少种方案. 解法:dp.先对点按横坐标排序(横坐标相等按纵坐标,也可以反过来)dp[i]表示不经过其他非法点走到 ...

  5. Codeforces Round #313 (Div. 2) E. Gerald and Giant Chess (Lucas + dp)

    题目链接:http://codeforces.com/contest/560/problem/E 给你一个n*m的网格,有k个坏点,问你从(1,1)到(n,m)不经过坏点有多少条路径. 先把这些坏点排 ...

  6. 2018.11.07 codeforces559C. Gerald and Giant Chess(dp+组合数学)

    传送门 令f[i]f[i]f[i]表示对于第iii个棋子,从(1,1)(1,1)(1,1)出发到它不经过其它棋子的方案数. 于是我们假设(h,w)(h,w)(h,w)有一个棋子,求出它的fff值就可以 ...

  7. dp - Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess

    Gerald and Giant Chess Problem's Link: http://codeforces.com/contest/559/problem/C Mean: 一个n*m的网格,让你 ...

  8. Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess DP

    C. Gerald and Giant Chess Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

  9. codeforces(559C)--C. Gerald and Giant Chess(组合数学)

    C. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  10. 【题解】CF559C C. Gerald and Giant Chess(容斥+格路问题)

    [题解]CF559C C. Gerald and Giant Chess(容斥+格路问题) 55336399 Practice: Winlere 559C - 22 GNU C++11 Accepte ...

随机推荐

  1. 2021新年 Vue3.0 + Element UI 尝鲜小记

    2021年,又是新的一年,Vue 已经发布 3.0 版本,最好用的 UI 组件库 Element UI 也发布了适配 Vue3.0 的新版本,是时候开始学习一下这两个新技术. 本文主要记录了使用 Vu ...

  2. oracle坚决不挂01(表,索引,视图的创建,修改,删除,查询)

    考试快来了,来篇oracle干货,复习一下(挣扎一下) 废话不多说,开始写! 这篇是数据库对象的有关操作的总结! 数据库对象有熟悉的表,视图,索引,序列,同义词等(这个oracle东西真不少,小声bb ...

  3. Openstack Keystone 认证服务(四)

    Openstack Keystone 认证服务(四) keystone 的安装完全依赖ocata的源, 如果没有建议自己搭建. 否则用的源不对会产生各种奇葩问题. 创建keystone库和用户: ## ...

  4. Linux 服务器安装node环境

    Linux 装 node 环境 我的是 CentOS 查看服务器是多少位系统 getconf LONG_BIT 下载地址, 下载对应的版本: http://nodejs.cn/download/ 我这 ...

  5. innnodb_doublewrite

    有写场景下,双写缓冲确实没必要,例如,你也许像在备库上禁用双写缓冲,此外,一些文件系统,例如zfs做了同样的事,所以,没必要再让innodb做一遍. innodb_double_write=0 即可关 ...

  6. DHCP最佳实践(三)

    这是Windows DHCP最佳实践和技巧的最终指南. 如果您有任何最佳做法或技巧,请在下面的评论中发布它们. 在本指南(三)中,我将分享以下DHCP最佳实践和技巧. 仅在需要时才使用IP冲突检测 运 ...

  7. HTML&CSS:构建网站不能不说的那些事儿

    很高兴你能看到这个专栏!俗话说得好,相逢即是缘分,没准你和我在上一世也曾有过五百次的回眸,才得此一面.说的有点恶心了,咱还是书归正传,说说这个专栏吧. 这个专栏主要讲的是 HTML 和 CSS 的页面 ...

  8. 基于.NET Core的优秀开源项目合集

    开源项目非常适合入门,并且可以作为体系结构参考的好资源, GitHub中有几个开源的.NET Core项目,这些项目将帮助您使用不同类型的体系结构和编码模式来深入学习 .NET Core技术, 本文列 ...

  9. ElasticSearch极简入门总结

    一,目录 安装es 项目添加maven依赖 es客户端组件注入到spring容器中 es与mysql表结构对比 索引的删除创建 文档的crud es能快速搜索的核心-倒排索引 基于倒排索引的精确搜索. ...

  10. Trove自动钓鱼脚本(国际服

    #WinActivateForce ; Script config. Do NOT change value here, might working inproperly! global Versio ...