CF-559C Gerald and Giant Chess(计数DP)
给定一个 \(H*W\)的棋盘,棋盘上只有\(N\) 个格子是黑色的,其他格子都是白色的。
在棋盘左上角有一个卒,每一步可以向右或者向下移动一格,并且不能移动到黑色格子中。求这个卒从左上角移动到右下角,一共有多少种可能的路线
\(1\le H,W\le 10^5,1\le N\le 2000\) 输出对\(10^9+7\)取模
H,W巨大,普通DP不用想,考虑如何用黑格子计数
由组合数学知识可知,从S到T的总路径条数为\(C_{H+W-2}^{H-1}\),只要减去至少经过一个黑格子的路径条数即为答案。
那么如何不重不漏的计数呢?
考虑每条至少经过一个黑格子的路径所包含的第一个黑格子,以4号黑格子(4,5)为例,从S到4号,总路径条数有\(C_{4+5-1-1}^{4-1}\)条,只要排除掉经过3和经过1的路径条数即为从S到4,不经过黑格子的路径数。如何排除?其实我们之前已经算出来了,在算S到4的不经过黑格子路径条数时,已经分别算过了S到3,S到1的不经过黑格子路径条数,只要分别乘上由3到4,由1到4的所有路径数即可。
把所有黑色格子按照行列坐标递增的顺序排序,设\(f[i]\) 为从S到第 \(i\)个格子,途中不经过其他黑色格子的路径数
\]
在求解计数类动态规划时,通常要找一个“基准点",围绕这个基准点构造一个不可划分的”整体",以避免子问题之间的重叠
#include <bits/stdc++.h>
using namespace std;
const int mod = 1e9+7;
const int N = 2e5+10;
typedef long long ll;
typedef pair<int,int> pii;
#define fi first
#define se second
ll jc[N],inv[N];
int h,w,n;
ll f[2010];
pii a[2010];
ll ksm(ll a,ll b){
ll res = 1;
for(;b;b>>=1){
if(b & 1)res = res * a % mod;
a = a * a % mod;
}
return res;
}
int C(int x,int y){
return jc[x] * inv[y] %mod * inv[x-y] % mod;
}
int main(){
jc[0] = 1;inv[0] = 1;
for(int i=1;i<N;i++)jc[i] = jc[i-1] * i % mod,inv[i] = ksm(jc[i],mod-2);
scanf("%d%d%d",&h,&w,&n);
for(int i=1;i<=n;i++)scanf("%d%d",&a[i].fi,&a[i].se);
sort(a+1,a+1+n);
a[n+1].fi = h;a[n+1].se = w;
for(int i=1;i<=n+1;i++){
int x = a[i].fi,y = a[i].se;
f[i] = C(x+y-2,x-1);
for(int j=1;j<i;j++){
int xj = a[j].fi;
int yj = a[j].se;
if(xj > x || yj > y)continue;
f[i] = (f[i] - (ll)f[j] * C(x-xj+y-yj,x-xj)%mod + mod)%mod;
}
}
printf("%lld\n",f[n+1]%mod);
return 0;
}
CF-559C Gerald and Giant Chess(计数DP)的更多相关文章
- CF 559C - Gerald and Giant Chess (组合计数)
\(C_{x+y}^y\)的公式,DP容斥删多余贡献. #include <cstdio> #include <iostream> #include <cstring&g ...
- CodeForces 559C Gerald and Giant Chess
C. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- Codeforces 559C Gerald and Giant Chess【组合数学】【DP】
LINK 题目大意 有一个wxh的网格,上面有n个黑点,问你从(1,1)走到(w,h)不经过任何黑点的方案数 思路 考虑容斥 先把所有黑点按照x值进行排序方便计算 \(dp_{i}\)表示从起点走到第 ...
- CF 560e Gerald and Giant Chess
题意:在h×w的棋盘中从左上角走到右下角,只能向右或向下走,有n个点不可以经过,一共有多少种方案. 解法:dp.先对点按横坐标排序(横坐标相等按纵坐标,也可以反过来)dp[i]表示不经过其他非法点走到 ...
- Codeforces Round #313 (Div. 2) E. Gerald and Giant Chess (Lucas + dp)
题目链接:http://codeforces.com/contest/560/problem/E 给你一个n*m的网格,有k个坏点,问你从(1,1)到(n,m)不经过坏点有多少条路径. 先把这些坏点排 ...
- 2018.11.07 codeforces559C. Gerald and Giant Chess(dp+组合数学)
传送门 令f[i]f[i]f[i]表示对于第iii个棋子,从(1,1)(1,1)(1,1)出发到它不经过其它棋子的方案数. 于是我们假设(h,w)(h,w)(h,w)有一个棋子,求出它的fff值就可以 ...
- dp - Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess
Gerald and Giant Chess Problem's Link: http://codeforces.com/contest/559/problem/C Mean: 一个n*m的网格,让你 ...
- Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess DP
C. Gerald and Giant Chess Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...
- codeforces(559C)--C. Gerald and Giant Chess(组合数学)
C. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- 【题解】CF559C C. Gerald and Giant Chess(容斥+格路问题)
[题解]CF559C C. Gerald and Giant Chess(容斥+格路问题) 55336399 Practice: Winlere 559C - 22 GNU C++11 Accepte ...
随机推荐
- 微信开发所需要的的方法(签名认证、数组转字符串方法、将xml字符串转换为数组、发送xml请求方法)
//将xml字符串转换为数组 public function xmlToArray($xml){ $array_data = json_decode(json_encode(simplexml_loa ...
- epoll的陷阱
Starvation 特别提出在ET模式下,因为需要一次性把数据读完,如果一次性通知的数据过大,有可能处理时间过长,导致同一线程其他的事件长时间等待.这个不仅仅是ET模式下,也不仅仅是epoll模型下 ...
- .netcore 急速接入第三方登录,不看后悔
新年新气象,趁着新年的喜庆,肝了十来天,终于发了第一版,希望大家喜欢. 如果有不喜欢看文字的童鞋,可以直接看下面的地址体验一下: https://oauthlogin.net/ 前言 此次带来得这个小 ...
- 解决GitHub下载速度慢的问题(已解决)
核心:通过码云导入github资源,通过码云转接下载. $\color{blue}{1. 找到需要下载的GitHub地址}$ 然后复制链接,转到码云上去. $\color{blue}{2. 打开 ...
- SpringBoot同时接收单个对象和List<object>参数
最近做项目的有个需求,是把多个文件移动到另一个文件夹下,这需要把 新的文件夹id -- Long类型 多个文件的信息 -- List< Object > 类型 这两个参数传给后台,我的后台 ...
- 【win10】win10下两个显示器不同桌面壁纸
win10系统下,双屏显示为不同的桌面壁纸 操作: 1.鼠标右键点击个性化 2.点击背景选项 3.在图片上右键选择要添加为背景的图片 同理,将另一个屏幕壁纸设为监视器1 最后效果为两个分屏为不同桌面壁 ...
- CTFshow-萌新赛逆向_签退
查看题目信息 下载re3.pyc文件 使用uncompyle把re3.pyc反编译为re3.py uncompyle6 re3.pyc > re3.py 查看re3.py文件 # uncompy ...
- 深入解析vue响应式原理
摘要:本文主要通过结合vue官方文档及源码,对vue响应式原理进行深入分析. 1.定义 作为vue最独特的特性,响应式可以说是vue的灵魂了,表面上看就是数据发生变化后,对应的界面会重新渲染,那么响应 ...
- luoguP2016 战略游戏
题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题.他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能了 ...
- vue3.0 composition API
一.Setup函数 1.创建时间:组件创建之前被调用,优先与created被调用,this指向的实例为window,created所指向的实例为proxy 2.this指向:不会指向组件实例 3.参数 ...