传送门:

https://www.luogu.com.cn/problem/P3046

https://ac.nowcoder.com/acm/contest/6306/G

题意

给定n个不同的点,求这个点集有多少条对称轴

题解

对于一个点只有两种情况,一种是和另一个点关于这条线对称,一种是在对称轴上。

第一种情况:随机选择一个点p,枚举其他的点和他形成的对称轴,然后再判断这个对称轴是不是点集的对称轴。

第二种情况:当点在对称轴上时,要么另一个点 q 也在对称轴上,两点所在的直线是对称轴,这种情况直接判断这个对称轴是不是点集的对称轴。要么另一个点 q 关于这个点 p 所在的直线有对称点,这个时候按照第一种情况随机点为 q ,枚举其他点和他形成的对称轴,但是这个对称轴要经过点 p 。

想法很好理解,但是实现很难,在洛谷看到了一个题解,代码比较容易理解。

https://www.luogu.com.cn/blog/jzzcjb/dui-cheng-xing-symmetry-ti-xie

用到的数学结论

两点(x1,y1)(x2,y2)求过两点直线Ax+By+C=0
A=y2-y1 B=x1-x2 C=x2*y1-x1*y2 两点(x1,y1)(x2,y2)求两点间的对称轴Ax+By+C=0
A=x1-x2 B=y1-y2 C=-((x1+x2)(x1-x2)+(y1+y2)(y1-y2))/2 求(x',y')关于直线 Ax+By+C=0 的对称点(x0,y0)
设 k=-2*(A*x'+B*y'+C)/(A*A+B*B);
x0=x'+k*A;
y0=y'+k*B;

代码

优化了一下这个题解的代码,可以直接用set来记录一对点是否存在

 1 #include<bits/stdc++.h>
2 #define eps 1e-6
3 using namespace std;
4
5 int n,cnt,x[100100],y[100100];
6 set<pair<int,int> >s;
7
8 bool dy(double x,double y){return ((x-y<=eps)||(y-x<=eps));}
9
10 bool is(double A,double B,double C){//判断某条直线是否是对称轴
11 for(int i=1;i<=n;i++){
12 /*
13 求(x',y')关于直线 Ax+By+C=0 的对称点(x0,y0)
14 设 k=-2*(A*x'+B*y'+C)/(A*A+B*B);
15 x0=x'+k*A;
16 y0=y'+k*B;
17 */
18 double k=-2*(double)(A*x[i]+B*y[i]+C)/(A*A+B*B);
19 double xo=x[i]+k*A;int xx=round(xo);
20 double yo=y[i]+k*B;int yy=round(yo);
21 if(!s.count({xx,yy})) return 0;
22 }
23 return 1;
24 }
25
26 bool check(int a,int b){ //以两点为一对对称点
27 //A=x1-x2 B=y1-y2 C=-((x1+x2)(x1-x2)+(y1+y2)(y1-y2))/2
28 double A=x[a]-x[b];
29 double B=y[a]-y[b];
30 double C=(double)-((x[a]*x[a]-x[b]*x[b])+(y[a]*y[a]-y[b]*y[b]))/2;
31 if(a!=1&&A*x[1]+B*y[1]+C!=0) return 0;
32 return is(A,B,C);
33 }
34
35 bool ok(int a,int b){ //以两点所在直线为对称轴
36 //A=y2-y1 B=x1-x2 C=x2*y1-x1*y2
37 int A=y[b]-y[a];
38 int B=x[a]-x[b];
39 int C=x[b]*y[a]-x[a]*y[b];
40 return is(A,B,C);
41 }
42
43 int main()
44 {
45 cin>>n;
46 for(int i=1;i<=n;i++) cin>>x[i]>>y[i],s.insert({x[i],y[i]});
47 for(int i=2;i<=n;i++) cnt+=check(1,i);
48 for(int i=2;i<n;i++) cnt+=check(i,n);
49 cout<<cnt+ok(1,n);
50 }

[USACO12FEB]Symmetry的更多相关文章

  1. bzoj2592: [Usaco2012 Feb]Symmetry

    Description After taking a modern art class, Farmer John has become interested in finding geometric ...

  2. Symmetry(对称轴存在问题)

    Symmetry Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Description   Th ...

  3. fzu 2035 Axial symmetry(枚举+几何)

    题目链接:fzu 2035 Axial symmetry 题目大意:给出n个点,表示n边形的n个顶点,判断该n边形是否为轴对称图形.(给出点按照图形的顺时针或逆时针给出. 解题思路:将相邻两个点的中点 ...

  4. [刷题]算法竞赛入门经典(第2版) 5-6/UVa1595 - Symmetry

    题意:平面上给若干点,问它们是不是关于某垂直于x轴的直线对称. 代码:(Wrong Answer, –ms) //UVa1595 - Symmetry #include<iostream> ...

  5. rosetta对称性文件(rosetta symmetry file)的产生及应用

    针对对称性PDB 3UKM,使用make_symmdef_file.pl脚本,可以执行产生对称单元及对称文件: $> $ROSETTA3/src/apps/public/symmetry/mak ...

  6. 洛谷P3048 [USACO12FEB]牛的IDCow IDs

    P3048 [USACO12FEB]牛的IDCow IDs 12通过 67提交 题目提供者lin_toto 标签USACO2012 难度普及/提高- 时空限制1s / 128MB 提交  讨论  题解 ...

  7. Codeforces Round #127 (Div. 1) A. Clear Symmetry 打表

    A. Clear Symmetry 题目连接: http://codeforces.com/contest/201/problem/A Description Consider some square ...

  8. 树形DP【洛谷P3047】 [USACO12FEB]附近的牛Nearby Cows

    P3047 [USACO12FEB]附近的牛Nearby Cows 农民约翰已经注意到他的奶牛经常在附近的田野之间移动.考虑到这一点,他想在每一块土地上种上足够的草,不仅是为了最初在这片土地上的奶牛, ...

  9. 洛谷P3045 [USACO12FEB]牛券Cow Coupons

    P3045 [USACO12FEB]牛券Cow Coupons 71通过 248提交 题目提供者洛谷OnlineJudge 标签USACO2012云端 难度提高+/省选- 时空限制1s / 128MB ...

随机推荐

  1. Spring Boot 2.x基础教程:使用Flyway管理数据库版本

    之前已经介绍了很多在Spring Boot中使用MySQL的案例,包含了Spring Boot最原始的JdbcTemplate.Spring Data JPA以及我们国内最常用的MyBatis.同时, ...

  2. 人生苦短我用Python,本文助你快速入门

    目录 前言 Python基础 注释 变量 数据类型 浮点型 复数类型 字符串 布尔类型 类型转换 输入与输出 运算符 算术运算符 比较运算符 赋值运算符 逻辑运算符 if.while.for 容器 列 ...

  3. 【Markdown】使用方法与技巧

    Markdown使用方法与技巧 前言  注意到Github上经常含有.md格式的文件,之后了解到这个是用Markdown编辑后生成的文件.Markdown语言用途广泛,故学之. 简介  Markdow ...

  4. 九:APP及其他资产

    APP提取一键反编译提取 APP抓数据包进行工具配合 各种第三方应用相关探针技术 各种服务器接口相关探针技术 APP提取及抓包及后续配合 某APK一键提取反编译 利用burp历史抓更多URL 某IP无 ...

  5. 翻译 - ASP.NET Core 托管和部署 - 在 Linux 上使用 Nginx 托管 ASP.NET Core 网站

    翻译自 https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-nginx?view=aspnetcore-5.0 本文介 ...

  6. 发票校验BAPI_INCOMINGINVOICE_CREATE

    CALL FUNCTION 'BAPI_INCOMINGINVOICE_CREATE'    EXPORTING      headerdata                = headerdata ...

  7. 与图论的邂逅06:dfs找环

    当我在准备做基环树的题时,经常有了正解的思路确发现不会找环,,,,,,因为我实在太蒻了. 所以我准备梳理一下找环的方法: 有向图 先维护一个栈,把遍历到的节点一个个地入栈.当我们从一个节点x回溯时无非 ...

  8. 干电池升压3.3V的电源芯片

    PW5100适用于一节干电池升压到3.3V,两节干电池升压3.3V的升压电路,PW5100干电池升压IC. 干电池1.5V和两节干电池3V升压到3.3V的测试数据 两节干电池输出500MA测试: PW ...

  9. .NET Core部署到linux(CentOS)最全解决方案,高阶篇(Docker+Nginx 或 Jexus)

    在前两篇: .NET Core部署到linux(CentOS)最全解决方案,常规篇 .NET Core部署到linux(CentOS)最全解决方案,进阶篇(Supervisor+Nginx) 我们对. ...

  10. PWN_ret2text,ret2syscall,ret2shellcode

    首先了解下Linux中的保护机制(具体的绕过等后续再说) 1.canary(栈保护) 在函数开始时就随机产生一个值,将这个值CANARY放到栈上紧挨ebp的上一个位置,当攻击者想通过缓冲区溢出覆盖eb ...