T1题面:

 输入点数为N一棵树

 求树上长度恰好为K的路径个数

 (n < 1e5, k < 500)

  这是今天的考试题,也是一道假的紫题,因为我一个根本不会dp的蒟蒻只知道状态就一遍A掉了……(然后我当时不会……emm)

  考虑f[i][j]表示点i为根的子树中深度为j的点的个数,初始设置f[i][0] = 1。转移的时候,每搞完一棵子树就用这棵子树内的数据用乘法原理更新ans,然后再把它的贡献累加给根,这样可以保证统计不重不漏。

  也可以用点分治来做。

代码:

  1. #include <iostream>
  2. #include <cstdio>
  3. #define maxn 50010
  4. using namespace std;
  5. template <typename T>
  6. void read(T &x) {
  7. x = 0;
  8. int f = 1;
  9. char ch = getchar();
  10. while (!isdigit(ch)) {
  11. if (ch == '-')
  12. f = -1;
  13. ch = getchar();
  14. }
  15. while (isdigit(ch)) {
  16. x = x * 10 + (ch ^ 48);
  17. ch = getchar();
  18. }
  19. x *= f;
  20. return;
  21. }
  22. void open_file(string s) {
  23. string In = s + ".in", Out = s + ".out";
  24. freopen(In.c_str(), "r", stdin);
  25. freopen(Out.c_str(), "w", stdout);
  26. }
  27. int head[maxn], top, n, k;
  28. struct E {
  29. int to, nxt;
  30. } edge[maxn << 1];
  31. inline void insert(int u, int v) {
  32. edge[++top] = (E) {v, head[u]};
  33. head[u] = top;
  34. }
  35. int f[maxn][510];//第二维j表示深度为j的点数
  36. long long ans;
  37. void dp(int u, int pre) {
  38. for (int i = head[u]; i; i = edge[i].nxt) {
  39. int v = edge[i].to;
  40. if (v == pre)
  41. continue;
  42. dp(v, u);
  43. for (int i = 0; i < k; ++i) //先统计答案
  44. ans += f[u][i] * f[v][k-i-1];
  45. for (int i = 1; i <= k; ++i) //算贡献
  46. f[u][i] += f[v][i-1];
  47. }
  48. return;
  49. }
  50. int main() {
  51. //  open_file("distance");
  52. read(n), read(k);
  53. int u, v;
  54. for (int i = 1; i < n; ++i) {
  55. read(u), read(v);
  56. insert(u, v), insert(v, u);
  57. }
  58. for (int i = 1; i <= n; ++i)
  59. f[i][0] = 1;
  60. dp(1, 0);
  61. printf("%I64d\n", ans);
  62. return 0;
  63. }

  T2题面就不放了。这是一道树形dp的入门题。

  考虑每个点可以有选与不选两种状态,设f[i][0]表示不选这个点后以该点为根的最大贡献,f[i][1]表示选。我们可以自底向顶转移,有f[u][1] = w[u] + sigma(f[v][0]),f[u][0] = sigma(max(f[v][0], f[v][1])。注意第二个方程中选不选子节点是都可以的,要注意这种比较松的限制可能遗漏。

代码:

  1. #include <iostream>
  2. #include <cstdio>
  3. #define maxn 6010
  4. template <typename T>
  5. void read(T &x) {
  6. x = 0;
  7. int f = 1;
  8. char ch = getchar();
  9. while (!isdigit(ch)) {
  10. if (ch == '-')
  11. f = -1;
  12. ch = getchar();
  13. }
  14. while (isdigit(ch)) {
  15. x = x * 10 + (ch ^ 48);
  16. ch = getchar();
  17. }
  18. x *= f;
  19. return;
  20. }
  21. using namespace std;
  22. int head[maxn], top;
  23. struct E {
  24. int to, nxt;
  25. } edge[maxn << 1];
  26. inline void insert(int u, int v) {
  27. edge[++top] = (E) {v, head[u]};
  28. head[u] = top;
  29. }
  30. int f[maxn][2], w[maxn], ind[maxn], n, root;
  31. void dp(int u) {
  32. f[u][1] = w[u];
  33. for (int i = head[u]; i; i = edge[i].nxt) {
  34. int v = edge[i].to;
  35. dp(v);
  36. f[u][1] += f[v][0];
  37. f[u][0] += max(f[v][1], f[v][0]);
  38. }
  39. return;
  40. }
  41. int main() {
  42. read(n);
  43. for (int i = 1; i <= n; ++i)
  44. read(w[i]);
  45. int u, v;
  46. for (int i = 1; i < n; ++i) {
  47. read(u), read(v);
  48. insert(v, u);
  49. ++ind[u];
  50. }
  51. for (int i = 1; i <= n; ++i)
  52. if (!ind[i]) {
  53. root = i;
  54. break;
  55. }
  56. dp(root);
  57. printf("%d", max(f[root][0], f[root][1]));
  58. return 0;
  59. }

【树形dp】【CF161D】distance on a tree + 【P1352】没有上司的舞会的更多相关文章

  1. (树形DP入门题)Anniversary party(没有上司的舞会) HDU - 1520

    题意: 有个公司要举行一场晚会.为了让到会的每个人不受他的直接上司约束而能玩得开心,公司领导决定:如果邀请了某个人,那么一定不会再邀请他的直接的上司,但该人的上司的上司,上司的上司的上司等都可以邀请. ...

  2. 洛谷 p1352 没有上司的舞会 题解

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...

  3. 洛谷P1352 没有上司的舞会——树形DP

    第一次自己写树形DP的题,发个博客纪念`- 题目来源:P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结 ...

  4. P1352 没有上司的舞会——树形DP入门

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...

  5. 洛谷P1352 没有上司的舞会 [2017年5月计划 清北学堂51精英班Day3]

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子 结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职 ...

  6. luogu P1352 没有上司的舞会 x

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...

  7. P1352 没有上司的舞会&&树形DP入门

    https://www.luogu.com.cn/problem/P1352 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...

  8. [luogu]P1352 没有上司的舞会[树形DP]

    本Lowbee第一次写树形DP啊,弱...一个变量写错半天没看出来...... 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点 ...

  9. 【树形dp】Bzoj3391 [Usaco2004 Dec]Tree Cutting网络破坏

    Description     约翰意识到贝茜建设网络花费了他巨额的经费,就把她解雇了.贝茜很愤怒,打算狠狠报 复.她打算破坏刚建成的约翰的网络.    约翰的网络是树形的,连接着N(1≤N≤1000 ...

  10. 洛谷 P1352 没有上司的舞会【树形DP】(经典)

    <题目链接> <转载于>>> > 题目描述: 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...

随机推荐

  1. 简单的学生管理(C语言)

    #include<stdio.h> #include<stdlib.h> #include<string.h> struct Student_type{ char ...

  2. Educational Codeforces Round 95 (Rated for Div. 2)

    CF的Educational Round (Div.2),质量还是蛮高的. A: 水题 #include<cstdio> #include<algorithm> typedef ...

  3. eclipse配置springMVC

    基础还是创建一个Dynamic web project. WEB-INF/lib中添加必需的jar. commons-logging-1.1.3.jar spring-aop-4.3.6.RELEAS ...

  4. CodeForces 1344D Résumé Review

    题意 给定一个长度为 \(n\) 的序列 \(a\) 和一个整数 \(k\),构造一个序列 \(b\) 使得满足以下条件: \(0\leq b_i\leq a_i\) \(\sum\limits_{i ...

  5. STM32入门系列-介绍STM32型号与功用

    作为STM32初学者,一般会选择购置一块开发板,因为在开发板上有很多已经集成好的模块,如红外模块.按键模块.LED模块.DAC模块.ADC模块.can模块.485模块.以太网模块.WiFi模块.蜂鸣器 ...

  6. 分四个阶段学习python并找到一份好工作

    第一阶段 关注公众号"轻松学编程"了解更多. 详细学习资料 需要时间一个月. 1.python概念 ​ python是一种解释型.面向对象.动态数据类型的高级程序语言. ​ 理解: ...

  7. C++代码雨

    闲逛的时候发现了一个很好玩的程序 摘自:https://blog.csdn.net/u012837895/article/details/20849967#comments 效果如下 #include ...

  8. 配置交换机基于接口划分VLAN(接入层设备作为网关)

    组网图形 简介 划分VLAN的方式有:基于接口.基于MAC地址.基于IP子网.基于协议.基于策略(MAC地址.IP地址.接口).其中基于接口划分VLAN,是最简单,最常见的划分方式. 基于接口划分VL ...

  9. HTML5+CSS3 QQ会员页面导航

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  10. Python替换字符串中的空格

    这是来源剑指offer的第二题,直接调用replace函数进行空格替换即可. 当我又想试试挨个字符比较进行替换时程序报错了: 错误原因是在python中字符串是一个不可变的数据类型,如果进行替换字符可 ...