【树形dp】【CF161D】distance on a tree + 【P1352】没有上司的舞会
T1题面:
输入点数为N一棵树
求树上长度恰好为K的路径个数
(n < 1e5, k < 500)
这是今天的考试题,也是一道假的紫题,因为我一个根本不会dp的蒟蒻只知道状态就一遍A掉了……(然后我当时不会……emm)
考虑f[i][j]表示点i为根的子树中深度为j的点的个数,初始设置f[i][0] = 1。转移的时候,每搞完一棵子树就用这棵子树内的数据用乘法原理更新ans,然后再把它的贡献累加给根,这样可以保证统计不重不漏。
也可以用点分治来做。
代码:
- #include <iostream>
- #include <cstdio>
- #define maxn 50010
- using namespace std;
- template <typename T>
- void read(T &x) {
- x = 0;
- int f = 1;
- char ch = getchar();
- while (!isdigit(ch)) {
- if (ch == '-')
- f = -1;
- ch = getchar();
- }
- while (isdigit(ch)) {
- x = x * 10 + (ch ^ 48);
- ch = getchar();
- }
- x *= f;
- return;
- }
- void open_file(string s) {
- string In = s + ".in", Out = s + ".out";
- freopen(In.c_str(), "r", stdin);
- freopen(Out.c_str(), "w", stdout);
- }
- int head[maxn], top, n, k;
- struct E {
- int to, nxt;
- } edge[maxn << 1];
- inline void insert(int u, int v) {
- edge[++top] = (E) {v, head[u]};
- head[u] = top;
- }
- int f[maxn][510];//第二维j表示深度为j的点数
- long long ans;
- void dp(int u, int pre) {
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- if (v == pre)
- continue;
- dp(v, u);
- for (int i = 0; i < k; ++i) //先统计答案
- ans += f[u][i] * f[v][k-i-1];
- for (int i = 1; i <= k; ++i) //算贡献
- f[u][i] += f[v][i-1];
- }
- return;
- }
- int main() {
- // open_file("distance");
- read(n), read(k);
- int u, v;
- for (int i = 1; i < n; ++i) {
- read(u), read(v);
- insert(u, v), insert(v, u);
- }
- for (int i = 1; i <= n; ++i)
- f[i][0] = 1;
- dp(1, 0);
- printf("%I64d\n", ans);
- return 0;
- }
T2题面就不放了。这是一道树形dp的入门题。
考虑每个点可以有选与不选两种状态,设f[i][0]表示不选这个点后以该点为根的最大贡献,f[i][1]表示选。我们可以自底向顶转移,有f[u][1] = w[u] + sigma(f[v][0]),f[u][0] = sigma(max(f[v][0], f[v][1])。注意第二个方程中选不选子节点是都可以的,要注意这种比较松的限制可能遗漏。
代码:
- #include <iostream>
- #include <cstdio>
- #define maxn 6010
- template <typename T>
- void read(T &x) {
- x = 0;
- int f = 1;
- char ch = getchar();
- while (!isdigit(ch)) {
- if (ch == '-')
- f = -1;
- ch = getchar();
- }
- while (isdigit(ch)) {
- x = x * 10 + (ch ^ 48);
- ch = getchar();
- }
- x *= f;
- return;
- }
- using namespace std;
- int head[maxn], top;
- struct E {
- int to, nxt;
- } edge[maxn << 1];
- inline void insert(int u, int v) {
- edge[++top] = (E) {v, head[u]};
- head[u] = top;
- }
- int f[maxn][2], w[maxn], ind[maxn], n, root;
- void dp(int u) {
- f[u][1] = w[u];
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- dp(v);
- f[u][1] += f[v][0];
- f[u][0] += max(f[v][1], f[v][0]);
- }
- return;
- }
- int main() {
- read(n);
- for (int i = 1; i <= n; ++i)
- read(w[i]);
- int u, v;
- for (int i = 1; i < n; ++i) {
- read(u), read(v);
- insert(v, u);
- ++ind[u];
- }
- for (int i = 1; i <= n; ++i)
- if (!ind[i]) {
- root = i;
- break;
- }
- dp(root);
- printf("%d", max(f[root][0], f[root][1]));
- return 0;
- }
【树形dp】【CF161D】distance on a tree + 【P1352】没有上司的舞会的更多相关文章
- (树形DP入门题)Anniversary party(没有上司的舞会) HDU - 1520
题意: 有个公司要举行一场晚会.为了让到会的每个人不受他的直接上司约束而能玩得开心,公司领导决定:如果邀请了某个人,那么一定不会再邀请他的直接的上司,但该人的上司的上司,上司的上司的上司等都可以邀请. ...
- 洛谷 p1352 没有上司的舞会 题解
P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...
- 洛谷P1352 没有上司的舞会——树形DP
第一次自己写树形DP的题,发个博客纪念`- 题目来源:P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结 ...
- P1352 没有上司的舞会——树形DP入门
P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...
- 洛谷P1352 没有上司的舞会 [2017年5月计划 清北学堂51精英班Day3]
P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子 结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职 ...
- luogu P1352 没有上司的舞会 x
P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...
- P1352 没有上司的舞会&&树形DP入门
https://www.luogu.com.cn/problem/P1352 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...
- [luogu]P1352 没有上司的舞会[树形DP]
本Lowbee第一次写树形DP啊,弱...一个变量写错半天没看出来...... 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点 ...
- 【树形dp】Bzoj3391 [Usaco2004 Dec]Tree Cutting网络破坏
Description 约翰意识到贝茜建设网络花费了他巨额的经费,就把她解雇了.贝茜很愤怒,打算狠狠报 复.她打算破坏刚建成的约翰的网络. 约翰的网络是树形的,连接着N(1≤N≤1000 ...
- 洛谷 P1352 没有上司的舞会【树形DP】(经典)
<题目链接> <转载于>>> > 题目描述: 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...
随机推荐
- C. Vladik and Memorable Trip 解析(思維、DP)
Codeforce 811 C. Vladik and Memorable Trip 解析(思維.DP) 今天我們來看看CF811C 題目連結 題目 給你一個數列,一個區段的數列的值是區段內所有相異數 ...
- 【论文阅读】An Empirical Study of Architectural Decay in Open-Source Software
2020-06-19这篇文章是我学习 软件架构与中间件 课程时分享的论文.可以说,这篇文章塑造了我基本的科研观,也养成了我如今看论文的习惯.感谢老师们,也感谢恒恒对我的帮助. 论文地址: https: ...
- eclipse配置springMVC
基础还是创建一个Dynamic web project. WEB-INF/lib中添加必需的jar. commons-logging-1.1.3.jar spring-aop-4.3.6.RELEAS ...
- Luogu P6830 [IOI2020]Connecting Supertrees
题意 好复杂,我就不写了. 题解 口胡了一下,发现我居然会 IOI 的题? 首先发现有 \(3\) 一定不合法,因为连通块里面有一个环的话 \(p_{i,j}\) 最多为 \(2\),有两个环的话就存 ...
- NB-IOT基站的优势和特点
NB-IOT基站是什么 NB-IOT基站的主要目的是完成移动通信网和UE之间的通信和管理功能,在移动通信中是组成蜂窝小区最基本的单元.只有在基站信号的覆盖范围之内通过运营商网络连接的NB ...
- git同步源码到gitee和github
如何把我们的源码同步到gitee或github远程仓库中 同步方式分以下几种: 1.命令同步 先查看下我们是否有远程仓库:git remote -v 如有就要删除远程仓库或是同命令覆盖,如全新安 ...
- [Luogu P1613]跑路 (DP+倍增+最短路)
题面 传送门:https://www.luogu.org/problemnew/show/P1613 Solution 挺有意思的一道题. 题面已经挺明显的描述出了这题的主要思想:倍增. 先这样想,我 ...
- centos 6.5 时间网络同步
安装 ntpdate sudo yum -y install ntp ntpdate 修改为上海时区 sudo vim /etc/sysconfig/clock ZONE = "Asia/S ...
- 服务网格istio概念应知应会
一.背景 最近架构组基于istio开发了服务网格(Service Mesh)平台,借此机会把相关的背景知识做一次学习和记录,方便回头查看. 初版的效果: 二.istio 官方手册:https://is ...
- 微软发布.net 6,net5 RC2
2020-11-13 更新 .net 6 SDK https://dotnetcli.azureedge.net/dotnet/Sdk/6.0.100-alpha.1.20562.2/dotnet-s ...