这份代码来自于苏剑林

# -*- coding:utf-8 -*-

from keras.layers import Layer
import keras.backend as K class CRF(Layer):
"""纯Keras实现CRF层
CRF层本质上是一个带训练参数的loss计算层,因此CRF层只用来训练模型,
而预测则需要另外建立模型,但是还是要用到训练好的转移矩阵
"""
def __init__(self, ignore_last_label=False, **kwargs):
"""ignore_last_label:定义要不要忽略最后一个标签,起到mask的效果
"""
self.ignore_last_label = 1 if ignore_last_label else 0
super(CRF, self).__init__(**kwargs)
def build(self, input_shape):
self.num_labels = input_shape[-1] - self.ignore_last_label
self.trans = self.add_weight(name='crf_trans',
shape=(self.num_labels, self.num_labels),
initializer='glorot_uniform',
trainable=True)
def log_norm_step(self, inputs, states):
"""递归计算归一化因子
要点:1、递归计算;2、用logsumexp避免溢出。
技巧:通过expand_dims来对齐张量。
"""
states = K.expand_dims(states[0], 2) # previous
inputs = K.expand_dims(inputs, 2) # 这个时刻的对标签的打分值,Emission score
trans = K.expand_dims(self.trans, 0) # 转移矩阵 output = K.logsumexp(states+trans+inputs, 1) # e 指数求和,log是防止溢出
return output, [output] def path_score(self, inputs, labels):
"""计算目标路径的相对概率(还没有归一化)
要点:逐标签得分,加上转移概率得分。
技巧:用“预测”点乘“目标”的方法抽取出目标路径的得分。
"""
# 在CRF中涉及到标签得分加上转移概率,而这个point score就是相当于是标签得分(在真是标签的情况下,查看预测对于真实标签位置的总得分),因为labels的shape是[B, T, N],而在N这个维度是one-hot,
# 这里再乘以pred,相当于是对labels存在1的地方进行打分,其余地方全为0,再进行第2个维度相加表示去除0的值,再相加表示求一个总的标签得分
point_score = K.sum(K.sum(inputs*labels, 2), 1, keepdims=True) # 逐标签得分, shape [B, 1]
labels1 = K.expand_dims(labels[:, :-1], 3) # shape [B, T-1, N, 1]
labels2 = K.expand_dims(labels[:, 1:], 2) # shape [B, T-1, 1, N]
# 这里相乘的目的相当于从上一时刻转移到当前时刻,确定当前时刻是从上一时刻哪一个标签转移过来的,因为labels是one-hot的形式,所以在最后两个维度只有1个元素为1,其他全部为0,表示转移标志
labels = labels1 * labels2 # 两个错位labels,负责从转移矩阵中抽取目标转移得分 shape [B, T-1, N, N]
trans = K.expand_dims(K.expand_dims(self.trans, 0), 0)
# K.sum(trans*labels, [2, 3]),因为trans*labels的结果是[B, T-1, N, N], 而后面两个维度中只有1个有值,表示转移得分
trans_score = K.sum(K.sum(trans*labels, [2, 3]), 1, keepdims=True) # 求出所有T-1时刻的概率转移总得分,K.sum(trans*labels, [2, 3]), 表示每个时刻的转移得分
return point_score+trans_score # 两部分得分之和 def call(self, inputs): # CRF本身不改变输出,它只是一个loss
return inputs def loss(self, y_true, y_pred): # 目标y_pred需要是one hot形式
mask = 1-y_true[:, 1:, -1] if self.ignore_last_label else None
y_true, y_pred = y_true[:, :, :self.num_labels], y_pred[:, :, :self.num_labels]
init_states = [y_pred[:, 0]] # 初始状态
log_norm, _, _ = K.rnn(self.log_norm_step, y_pred[:, 1:], init_states, mask=mask) # 计算Z向量(对数) shape[batch_size, output_dim]
log_norm = K.logsumexp(log_norm, 1, keepdims=True) # 计算Z(对数)shape [batch_size, 1] 计算一个总的
path_score = self.path_score(y_pred, y_true) # 计算分子(对数)
return log_norm - path_score # 即log(分子/分母) def accuracy(self, y_true, y_pred): # 训练过程中显示逐帧准确率的函数,排除了mask的影响
mask = 1-y_true[:,:,-1] if self.ignore_last_label else None
y_true,y_pred = y_true[:,:,:self.num_labels],y_pred[:,:,:self.num_labels]
isequal = K.equal(K.argmax(y_true, 2), K.argmax(y_pred, 2))
isequal = K.cast(isequal, 'float32')
if mask == None:
return K.mean(isequal)
else:
return K.sum(isequal*mask) / K.sum(mask)

CRF keras代码实现的更多相关文章

  1. 从 python 中 axis 参数直觉解释 到 CNN 中 BatchNorm 的工作方式(Keras代码示意)

    1. python 中 axis 参数直觉解释 网络上的解释很多,有的还带图带箭头.但在高维下是画不出什么箭头的.这里阐述了 axis 参数最简洁的解释. 假设我们有矩阵a, 它的shape是(4, ...

  2. 深度学习(七)U-Net原理以及keras代码实现医学图像眼球血管分割

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9780786.html DRIVE数据集下载百度云链接:链接:https://pan.baidu ...

  3. 大数据开发之keras代码框架应用

    总体来讲keras这个深度学习框架真的很“简易”,它体现在可参考的文档写的比较详细,不像caffe,装完以后都得靠技术博客,keras有它自己的官方文档(不过是英文的),这给初学者提供了很大的学习空间 ...

  4. Keras代码超详细讲解LSTM实现细节

    1.首先我们了解一下keras中的Embedding层:from keras.layers.embeddings import Embedding: Embedding参数如下: 输入尺寸:(batc ...

  5. 条件随机场CRF原理介绍 以及Keras实现

    本文是对CRF基本原理的一个简明的介绍.当然,“简明”是相对而言中,要想真的弄清楚CRF,免不了要提及一些公式,如果只关心调用的读者,可以直接移到文末. 图示# 按照之前的思路,我们依旧来对比一下普通 ...

  6. 到底该如何入门Keras、Theano呢?(浅谈)

    目前刚刚开始学习Theano,可以说是一头雾水,后来发现Keras是对Theano进行了包装,直接使用Keras可以减少很多细节程序的书写,它是模块儿化的,使用比较方便,但更为细节的内容,还没有理解, ...

  7. Keras 学习之旅(一)

    软件环境(Windows): Visual Studio Anaconda CUDA MinGW-w64 conda install -c anaconda mingw libpython CNTK ...

  8. Inception模型和Residual模型卷积操作的keras实现

    Inception模型和Residual残差模型是卷积神经网络中对卷积升级的两个操作. 一.  Inception模型(by google) 这个模型的trick是将大卷积核变成小卷积核,将多个卷积核 ...

  9. Keras官方中文文档:序贯模型

    快速开始序贯(Sequential)模型 序贯模型是多个网络层的线性堆叠,也就是"一条路走到黑". 可以通过向Sequential模型传递一个layer的list来构造该模型: f ...

随机推荐

  1. 小程序之--动态设置页面标题 wx.setNavigationBarTitle

    参考地址 http://www.yilingsj.com/xwzj/2018-11-26/weixin-navigationbartitletext.html 页面最初是[在线教研] 可以在这个页面的 ...

  2. 【使用篇二】SpringBoot整合SpringDataJPA(18)

    一.pom.xml添加依赖 <dependencies> <!--web--> <dependency> <groupId>org.springfram ...

  3. jmeter 中使用正则表达式提取依赖参数

    1:登录接口 这里有一个实际的登录接口,在响应中返回了一串token,如下图 那么我们在接下来的接口-经验库列表中,就必须带入这一串token,否则响应报错,如下图所示    如何获取登录的口令呢?这 ...

  4. idea实战技巧

    一.背景 为什么想写这个,因为编码一线更多的是实战,实战中,可能一个快捷键,一个小技巧,就能省很多时间. 本文会持续记录,持续更新. 二.技巧 1.全局替换(带正则) 场景是: 多profile的情况 ...

  5. JAVA集合框架(二)-List和Set

    List的常用实现类 list集合是有序的,顺序即添加的顺序,元素是可重复的. ArrayList LinkedList Vector ArrayList 底层基于数组实现.在add元素的过程中,如果 ...

  6. Java入门系列之类继承、抽象类、接口(五)

    前言 C#和Java关于类.抽象类.接口使用方式基本相似,只是对应关键字使用不同罢了,本节呢,我们只是对照C#和Java中关于这三个概念在具体使用时,看看有哪些不一样的地方. 类继承 C#和Java在 ...

  7. 死磕 java线程系列之线程的生命周期

    (手机横屏看源码更方便) 注:java源码分析部分如无特殊说明均基于 java8 版本. 简介 大家都知道线程是有生命周期,但是彤哥可以认真负责地告诉你网上几乎没有一篇文章讲得是完全正确的. 常见的错 ...

  8. (转)颜色直方图, HSV直方图, histogram bins

    原文链接:https://www.xuebuyuan.com/3256564.html 一个histogram,通常可以用一个列向量表示(例子中的a,b),列向量里面的每一个值就是一个bin(a,b) ...

  9. Selenium(十九):unittest单元测试框架(五) Page Object设计模式

    1. Page Object设计模式 Page Object是Selenium自动化测试项目开发实践的最佳设计模式之一,它主要体现在对界面交互细节的封装,这样可以使测试方案更关注于业务而非界面细节.从 ...

  10. OpenCV:增加和减少图像的亮度,图像的加减法

    首先导包: import numpy as np import cv2 import matplotlib.pyplot as plt def show(image): plt.imshow(imag ...