官网链接:

http://spark.apache.org/docs/latest/sql-programming-guide.html#jdbc-to-other-databases

http://spark.apache.org/docs/latest/sql-data-sources-jdbc.html

1. 过滤数据

情景:使用spark通过JDBC的方式读取postgresql数据库中的表然后存储到hive表中供后面数据处理使用,但是只读取postgresql表中的某些字段,并且做一下数据上的过滤

根据平常的方式,基本都是读取整张表,感觉不应该这么不友好的,于是去官网翻了翻,如下:

指定dbtable参数时候可以使用子查询的方式,不单纯是指定表名

测试代码如下:

package com.kong.test.test;

import java.util.Properties;

import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;

public class SparkHiveTest {

	public static void main(String[] args) {
		SparkSession spark = SparkSession
				.builder()
				.appName("SparkCalibration")
				.master("local")
				.enableHiveSupport()
				.getOrCreate();
		spark.sparkContext().setLogLevel("ERROR");
		spark.sparkContext().setLocalProperty("spark.scheduler.pool", "production");

		String t2 = "(select id, name from test1) tmp";//这里需要有个别名
		String createSql = "create table if not exists default.test1 (\r\n" +
				"id string,\r\n" +
				"name string\r\n" +
				")ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' stored as TEXTFILE";
		spark.sql(createSql);
		spark.read().format("jdbc")
		.option("url", "jdbc:postgresql://ip address/database")
		.option("dbtable", t2).option("user", "login user").option("password", "login passwd")
		.option("fetchsize", "1000")
		.load()
		.createOrReplaceTempView("test1_tmp");

		spark.sql("insert overwrite table default.test1 select * from test1_tmp").show();

	}

}

  另外:如果对于hive表的存储格式没有要求,可以更简洁,如下:

		spark.read().format("jdbc")
		.option("url", "jdbc:postgresql://ip address/database")
		.option("dbtable", t2).option("user", "login user").option("password", "login passwd")
		.option("fetchsize", "1000")
		.load().write().mode(SaveMode.Overwrite).saveAsTable("default.test");

  至于基于哪种保存模式(SaveMode.Overwrite)可以结合实际场景;另外spark saveAsTable()默认是以parquet+snappy的形式写数据(生成的文件名.snappy.parquet),当然,也可以通过format()传入参数,使用orc等格式,并且可以指定其他压缩方式。


2. spark通过JDBC读取外部数据库的源码实现

2.1 最简洁的api,单分区

源码如下:

  /**
   * Construct a `DataFrame` representing the database table accessible via JDBC URL
   * url named table and connection properties.
   *
   * @since 1.4.0
   */
  def jdbc(url: String, table: String, properties: Properties): DataFrame = {
    assertNoSpecifiedSchema("jdbc")
    // properties should override settings in extraOptions.
    this.extraOptions ++= properties.asScala
    // explicit url and dbtable should override all
    this.extraOptions += (JDBCOptions.JDBC_URL -> url, JDBCOptions.JDBC_TABLE_NAME -> table)
    format("jdbc").load()
  }

2.2  指定表某个字段的上下限值(数值类型),生成相对应的where条件并行读取,源码如下:

/**
   * Construct a `DataFrame` representing the database table accessible via JDBC URL
   * url named table. Partitions of the table will be retrieved in parallel based on the parameters
   * passed to this function.
   *
   * Don't create too many partitions in parallel on a large cluster; otherwise Spark might crash
   * your external database systems.
   *
   * @param url JDBC database url of the form `jdbc:subprotocol:subname`.
   * @param table Name of the table in the external database.
   * @param columnName the name of a column of integral type that will be used for partitioning.
   * @param lowerBound the minimum value of `columnName` used to decide partition stride.
   * @param upperBound the maximum value of `columnName` used to decide partition stride.
   * @param numPartitions the number of partitions. This, along with `lowerBound` (inclusive),
   *                      `upperBound` (exclusive), form partition strides for generated WHERE
   *                      clause expressions used to split the column `columnName` evenly. When
   *                      the input is less than 1, the number is set to 1.
   * @param connectionProperties JDBC database connection arguments, a list of arbitrary string
   *                             tag/value. Normally at least a "user" and "password" property
   *                             should be included. "fetchsize" can be used to control the
   *                             number of rows per fetch.
   * @since 1.4.0
   */
  def jdbc(
      url: String,
      table: String,
      columnName: String,
      lowerBound: Long,
      upperBound: Long,
      numPartitions: Int,
      connectionProperties: Properties): DataFrame = {
    // columnName, lowerBound, upperBound and numPartitions override settings in extraOptions.
    this.extraOptions ++= Map(
      JDBCOptions.JDBC_PARTITION_COLUMN -> columnName,
      JDBCOptions.JDBC_LOWER_BOUND -> lowerBound.toString,
      JDBCOptions.JDBC_UPPER_BOUND -> upperBound.toString,
      JDBCOptions.JDBC_NUM_PARTITIONS -> numPartitions.toString)
    jdbc(url, table, connectionProperties)
  }

2.3 通过predicates: Array[String],传入每个分区的where子句中的谓词条件,并行读取,比如 :

String[] predicates = new String[] {"date <= '20180501'","date > '20180501' and date <= '20181001'","date > '20181001'"};

/**
   * Construct a `DataFrame` representing the database table accessible via JDBC URL
   * url named table using connection properties. The `predicates` parameter gives a list
   * expressions suitable for inclusion in WHERE clauses; each one defines one partition
   * of the `DataFrame`.
   *
   * Don't create too many partitions in parallel on a large cluster; otherwise Spark might crash
   * your external database systems.
   *
   * @param url JDBC database url of the form `jdbc:subprotocol:subname`
   * @param table Name of the table in the external database.
   * @param predicates Condition in the where clause for each partition.
   * @param connectionProperties JDBC database connection arguments, a list of arbitrary string
   *                             tag/value. Normally at least a "user" and "password" property
   *                             should be included. "fetchsize" can be used to control the
   *                             number of rows per fetch.
   * @since 1.4.0
   */
  def jdbc(
      url: String,
      table: String,
      predicates: Array[String],
      connectionProperties: Properties): DataFrame = {
    assertNoSpecifiedSchema("jdbc")
    // connectionProperties should override settings in extraOptions.
    val params = extraOptions.toMap ++ connectionProperties.asScala.toMap
    val options = new JDBCOptions(url, table, params)
    val parts: Array[Partition] = predicates.zipWithIndex.map { case (part, i) =>
      JDBCPartition(part, i) : Partition
    }
    val relation = JDBCRelation(parts, options)(sparkSession)
    sparkSession.baseRelationToDataFrame(relation)
  }

  

spark通过JDBC读取外部数据库,过滤数据的更多相关文章

  1. 读取mysql数据库的数据,转为json格式

    # coding=utf-8 ''' Created on 2016-10-26 @author: Jennifer Project:读取mysql数据库的数据,转为json格式 ''' import ...

  2. spring(读取外部数据库配置信息、基于注解管理bean、DI)

    ###解析外部配置文件在resources文件夹下,新建db.properties(和数据库连接相关的信息) driverClassName=com.mysql.jdbc.Driverurl=jdbc ...

  3. 读取mysq数据库l数据,并使用dataview显示

    来自<sencha touch权威指南>,约198页开始 通过php脚本,可以将mysql数据库的数据作为json数据格式进行读取. (1)php代码(bookinfo.php): < ...

  4. AndroidStudio 中查看获取MD5和SHA1值以及如何查看手机应用信息以及读取*.db数据库里面数据

    查看获取MD5和SHA1值具体操作方式链接 查看获取MD5和SHA1值实际操作命令CMD语句: C:\Users\Administrator>cd .android C:\Users\Admin ...

  5. C# 读取Oracle数据库视图数据异常问题处理

    会出现类似现在这种提示的错误 System.Data.OracleClient 需要 Oracle 客户端软件 version 8.1.7 或更高版本 情况1.开发过程中遇到这种问题解决 由于.net ...

  6. 在jsp页面直接读取mysql数据库显示数据

    闲来无事,学学java,虽说编程语言相通,但是接触一门新知识还是有些疑惑,边学边记录,方便以后温故. 直接给出代码: <%@page import="java.sql.ResultSe ...

  7. Excel2003读取sqlserver数据库表数据(图)

  8. 使用JDBC在MySQL数据库中快速批量插入数据

    使用JDBC连接MySQL数据库进行数据插入的时候,特别是大批量数据连续插入(10W+),如何提高效率呢? 在JDBC编程接口中Statement 有两个方法特别值得注意: void addBatch ...

  9. [原创]java使用JDBC向MySQL数据库批次插入10W条数据测试效率

    使用JDBC连接MySQL数据库进行数据插入的时候,特别是大批量数据连续插入(100000),如何提高效率呢?在JDBC编程接口中Statement 有两个方法特别值得注意:通过使用addBatch( ...

随机推荐

  1. java学习笔记(基础篇)—抽象与接口的区别

    抽象与接口的区别 一.抽象(abstract) 1. 抽象方法 1) 作用:定义规范 2) 抽象方法用来描述具有什么功能,但不提供实现. 3) 如果类中一个方法没有实现就要定义一个抽象方法. 2. 抽 ...

  2. 第一章 Servlet

    JavaEEe技术包括Servlet/Jsp.Java Message Service(JMS).Enterprise JavaBeans(EJB).JavaServer Faces(JSF),以及J ...

  3. SQL SERVER 活动监视-sys.dm_exec_requests

    sys.dm_exec_requests (Transact-SQL)应用: 针对 SQL Server 内正在执行的每个请求返回一行.sys.dm_exec_connections.sys.dm_e ...

  4. 手机web app开发笔记

    各位朋友好,最近自学开发了一个手机Web APP,“编程之路”,主要功能包括文章的展示,留言,注册登录,音乐播放等.为了记录学习心得,提高自己的编程水平,也许对其他朋友有点启发,特整理开发笔记如下. ...

  5. 洛谷P1140 相似基因

    题目:https://www.luogu.org/problemnew/show/P1140 分析: 本题一看就知道是一道动归,其实和字串距离非常的像,只不过多了题目规定的匹配相似度罢了. 匹配的相似 ...

  6. bulk更新mongodb的脚本

    bulk批处理mongodb,比普通的js脚本来的更快一些. 官方网址:https://docs.mongodb.com/manual/reference/method/Bulk/ bulk支持的方法 ...

  7. SpringBoot开发案例Nacos配置管理中心

    前言 在开发过程中,通常我们会配置一些参数来实现某些功能,比如是否开启某项服务,告警邮件配置等等.一般会通过硬编码.配置文件或者数据库的形式实现. 那么问题来了,如何更加优雅的实现?欢迎来到 Naco ...

  8. [剑指offer] 53. 表达数值的字符串

    题目描述 请实现一个函数用来判断字符串是否表示数值(包括整数和小数).例如,字符串"+100","5e2","-123","3.1 ...

  9. Java 基础知识面试题

    equals与==有什么区别? (1)==是判断两个变量或实例是不是指向同一个内存空间 (2)equals是判断两个变量或实例所指向的内存空间的值是不是相同 Object有哪些公用方法? (1)equ ...

  10. python课堂整理9---函数1

    函数 一. 函数就是为了完成某一个特定的功能 形式参数不占运行空间,只有传入实参后才占,用完立刻释放空间. 函数一遇到 return 就结束掉了 函数名() :运行函数,有返回值的话用变量承接 def ...