此处模拟 rpn_feature_maps数据的处理,最终得到rpn_class_logits, rpn_class, rpn_bbox。

代码如下:

import numpy as np
'''
层与层之间主要是中间变量H与W不一致,则此处模拟2层,分别改为8与4
'''
# 模拟某层,如p3
a1=np.ones((3,8,2)) # rpn_class_logits
b1=np.ones((3,8,2)) # rpn_class
c1=np.ones((3,8,4)) # rpn_bbox
# 模拟某层,如p4
a2=np.ones((3,4,2)) # rpn_class_logits
b2=np.ones((3,4,2)) #rpn_class
c2=np.ones((3,4,4)) #rpn_bbox
layer_outputs = []
'''
以下模拟此处代码,得到layer_outputs:
for p in rpn_feature_maps:
layer_outputs.append(rpn([p]))
'''
d1=[a1,b1,c1]
d2=[a2,b2,c2]
layer_outputs.append(d1)
layer_outputs.append(d2)
'''
outputs = list(zip(*layer_outputs))
'''
output_names = ["rpn_class_logits", "rpn_class", "rpn_bbox"] # 可跳过
outputs = list(zip(*layer_outputs))
print('outputs',outputs)
'''
此处模拟以下代码,最终得到rpn_class_logits, rpn_class, rpn_bbox值
outputs = [KL.Concatenate(axis=1, name=n)(list(o)) for o, n in zip(outputs, output_names)]
'''
rpn_class_logits = np.concatenate((list(outputs[0])[0],list( outputs[0])[1]),axis=1)
print('rpn_class_logits=',rpn_class_logits)
rpn_class = np.concatenate((list(outputs[1])[0],list( outputs[1])[1]),axis=1)
print('rpn_class=',rpn_class)
rpn_bbox=np.concatenate((list(outputs[2])[0],list( outputs[2])[1]),axis=1)
print('rpn_bbox=',rpn_bbox)

结果如下:

outputs [(array([[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]]), array([[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]])), (array([[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]]), array([[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]])), (array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],

[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],

[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]), array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],

[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],

[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]))]
rpn_class_logits= (array([[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]]), array([[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]]))
rpn_class= (array([[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]]), array([[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]]))
rpn_bbox= (array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],

[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],

[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]), array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],

[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],

[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]))
rpn_bbox= [[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]

[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]

[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]]

												

mask-rcnn代码解读(四):rpn_feature_maps数据的处理的更多相关文章

  1. 使用colab运行深度学习gpu应用(Mask R-CNN)实践

    1,目的 Google Colaboratory(https://colab.research.google.com)是谷歌开放的一款研究工具,主要用于机器学习的开发和研究.这款工具现在可以免费使用, ...

  2. [代码解析]Mask R-CNN介绍与实现(转)

    文章来源 DFann 版权声明:如果你觉得写的还可以,可以考虑打赏一下.转载请联系. https://blog.csdn.net/u011974639/article/details/78483779 ...

  3. Mask R-CNN用于目标检测和分割代码实现

    Mask R-CNN用于目标检测和分割代码实现 Mask R-CNN for object detection and instance segmentation on Keras and Tenso ...

  4. CVPR2019 | Mask Scoring R-CNN 论文解读

    Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...

  5. 目标检测论文解读11——Mask R-CNN

    目的 让Faster R-CNN能做实例分割的任务. 方法 模型的结构图如下. 与Faster R-CNN相比,主要有两点变化. (1) 用RoI Align替代RoI Pool. 首先回顾一下RoI ...

  6. [Network Architecture]Mask R-CNN论文解析(转)

    前言 最近有一个idea需要去验证,比较忙,看完Mask R-CNN论文了,最近会去研究Mask R-CNN的代码,论文解析转载网上的两篇博客 技术挖掘者 remanented 文章1 论文题目:Ma ...

  7. 论文阅读笔记三十六:Mask R-CNN(CVPR2017)

    论文源址:https://arxiv.org/pdf/1703.06870.pdf 开源代码:https://github.com/matterport/Mask_RCNN 摘要 Mask R-CNN ...

  8. 物体检测之FPN及Mask R-CNN

    对比目前科研届普遍喜欢把问题搞复杂,通过复杂的算法尽量把审稿人搞蒙从而提高论文的接受率的思想,无论是著名的残差网络还是这篇Mask R-CNN,大神的论文尽量遵循著名的奥卡姆剃刀原理:即在所有能解决问 ...

  9. CVPR2019 | Libra R-CNN 论文解读

    作者 | 文永亮 学校 | 哈尔滨工业大学(深圳) 研究方向 | 目标检测.GAN 推荐理由 ​ 这是一篇发表于CVPR2019的paper,是浙江大学和香港中文大学的工作,这篇文章十分有趣,网友戏称 ...

随机推荐

  1. Python工具库分享

    漏洞及渗透练习平台: WebGoat漏洞练习平台: https://github.com/WebGoat/WebGoat webgoat-legacy漏洞练习平台: https://github.co ...

  2. 使用Fiddler进行HTTP流量分析

    - 安装 Fiddler是一款免费软件,可以到其官网下载,地址是https://www.telerik.com/fiddler,也可以从我的网盘中下载,发送"fiddler"获取下 ...

  3. Android 布局渲染流程与卡顿优化

    文章内容概要 一.手机界面UI渲染显示流程 二.16ms原则 三.造成卡顿的原因 四.过度绘制介绍.检测工具.如何避免造成过度绘制造成的卡顿 一.手机界面UI渲染显示流程 大家都知道CPU(中央处理器 ...

  4. Window常用且通用快捷键

    Ctrl系列: Ctrl +z :回撤,后退 Ctrl +a :全选 Alt系列: Alt+Tab :切换窗口 Window系列 Window+R:打开“运行”窗口 Window+D:显示桌面 其中常 ...

  5. Troubleshooting ORA-1628 - max # extents (32765) reached for rollback segment <SEGMENT_NAME> (Doc ID 1580182.1)

    Troubleshooting ORA-1628 - max # extents (32765) reached for rollback segment <SEGMENT_NAME> ( ...

  6. mmap - 内存映射文件 - 减少一次内核空间内数据向用户空间数据拷贝的操作

    关于mmap 网上有很多有用的文章,我这里主要记录,日常使用到mmap时的理解: https://www.cnblogs.com/huxiao-tee/p/4660352.html 测试代码: htt ...

  7. bash 中 小括号的作用

    单小括号 () ①命令组.括号中的命令将会新开一个子shell顺序执行,所以括号中的变量不能够被脚本余下的部分使用.括号中多个命令之间用分号隔开,最后一个命令可以没有分号,各命令和括号之间不必有空格. ...

  8. [视频教程] 使用docker的方式安装redis

    直接使用docker拉取redis的镜像,并且进行端口映射与文件目录共享,这样可以直接在宿主机的端口上就可以进行访问了.其实本质上也是在一个简化版的ubuntu的容器内安装好的redis-server ...

  9. Linux:路径的概念及路径的切换

    路径分为绝对路径和相对路径 绝对路径:从/根开头的路径为绝对路径 相对路径:以当前目录为开头的为相对路径 根目录:/ 家目录:普通用户的家目录在/home下,root用户的家目录是/root 切换目录 ...

  10. 第十二章 WEB渗透

    Web技术发展 • 静态WEB• 动态WEB • 应用程序 • 数据库 • 每个人看到的内容不同 • 根据用户输入返回不同结果 WEB攻击面• Network• OS• WEB Server• App ...