1. 概述

在上一篇教程《WebGL简易教程(三):绘制一个三角形(缓冲区对象)》中,通过使用缓冲区对象(buffer object)来向顶点着色器传送数据。那么,如果这些数据(与顶点相关的数据,如法向量、颜色等)需要继续传送到片元着色器该怎么办呢?

例如这里给三角形的每个顶点赋予不同的颜色,绘制一个彩色的三角形。这个时候就需要用到之前(《WebGL简易教程(二):向着色器传输数据》)介绍过的varying变量了。

2. 示例:绘制三角形

改进上一篇中绘制三角形(HelloTriangle.js)的代码:

// 顶点着色器程序
var VSHADER_SOURCE =
'attribute vec4 a_Position;\n' + // attribute variable
'attribute vec4 a_Color;\n' +
'varying vec4 v_Color;\n' +
'void main() {\n' +
' gl_Position = a_Position;\n' + // Set the vertex coordinates of the point
' v_Color = a_Color;\n' +
'}\n'; // 片元着色器程序
var FSHADER_SOURCE =
'precision mediump float;\n' +
'varying vec4 v_Color;\n' +
'void main() {\n' +
' gl_FragColor = v_Color;\n' +
'}\n'; function main() {
// 获取 <canvas> 元素
var canvas = document.getElementById('webgl'); // 获取WebGL渲染上下文
var gl = getWebGLContext(canvas);
if (!gl) {
console.log('Failed to get the rendering context for WebGL');
return;
} // 初始化着色器
if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) {
console.log('Failed to intialize shaders.');
return;
} // 设置顶点位置
var n = initVertexBuffers(gl);
if (n < 0) {
console.log('Failed to set the positions of the vertices');
return;
} // 指定清空<canvas>的颜色
gl.clearColor(0.0, 0.0, 0.0, 1.0); // 清空<canvas>
gl.clear(gl.COLOR_BUFFER_BIT); // 绘制三角形
gl.drawArrays(gl.TRIANGLES, 0, n);
} function initVertexBuffers(gl) {
// 顶点坐标和颜色
var verticesColors = new Float32Array([
0.0, 0.5, 1.0, 0.0, 0.0,
-0.5, -0.5, 0.0, 1.0, 0.0,
0.5, -0.5, 0.0, 0.0, 1.0,
]); //
var n = 3; // 点的个数
var FSIZE = verticesColors.BYTES_PER_ELEMENT; //数组中每个元素的字节数 // 创建缓冲区对象
var vertexBuffer = gl.createBuffer();
if (!vertexBuffer) {
console.log('Failed to create the buffer object');
return -1;
} // 将缓冲区对象绑定到目标
gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
// 向缓冲区对象写入数据
gl.bufferData(gl.ARRAY_BUFFER, verticesColors, gl.STATIC_DRAW); //获取着色器中attribute变量a_Position的地址
var a_Position = gl.getAttribLocation(gl.program, 'a_Position');
if (a_Position < 0) {
console.log('Failed to get the storage location of a_Position');
return -1;
}
// 将缓冲区对象分配给a_Position变量
gl.vertexAttribPointer(a_Position, 2, gl.FLOAT, false, 5*FSIZE, 0); // 连接a_Position变量与分配给它的缓冲区对象
gl.enableVertexAttribArray(a_Position); //获取着色器中attribute变量a_Color的地址
var a_Color = gl.getAttribLocation(gl.program, 'a_Color');
if(a_Color < 0) {
console.log('Failed to get the storage location of a_Color');
return -1;
}
// 将缓冲区对象分配给a_Color变量
gl.vertexAttribPointer(a_Color, 3, gl.FLOAT, false, FSIZE * 5, FSIZE * 2);
// 连接a_Color变量与分配给它的缓冲区对象
gl.enableVertexAttribArray(a_Color); // 解除绑定
gl.bindBuffer(gl.ARRAY_BUFFER, null); return n;
}

1) 数据的组织

与之前的例子相似,数据仍然通过缓冲区传递到顶点着色器。在顶点着色器中,定义了两个attribute变量,分别代表位置和颜色信息:

// 顶点着色器程序
var VSHADER_SOURCE =
'attribute vec4 a_Position;\n' + // attribute variable
'attribute vec4 a_Color;\n' +

'}\n';

这意味着需要向顶点着色器传递两次数据。这里采取的做法仍然是一次性向缓冲区写入位置和颜色等所有的数据,然后分批次传入顶点着色器:

  // 创建缓冲区对象
var vertexBuffer = gl.createBuffer();
if (!vertexBuffer) {
console.log('Failed to create the buffer object');
return -1;
} // 将缓冲区对象绑定到目标
gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
// 向缓冲区对象写入数据
gl.bufferData(gl.ARRAY_BUFFER, verticesColors, gl.STATIC_DRAW); //获取着色器中attribute变量a_Position的地址
var a_Position = gl.getAttribLocation(gl.program, 'a_Position');
if (a_Position < 0) {
console.log('Failed to get the storage location of a_Position');
return -1;
}
// 将缓冲区对象分配给a_Position变量
gl.vertexAttribPointer(a_Position, 2, gl.FLOAT, false, 5*FSIZE, 0); // 连接a_Position变量与分配给它的缓冲区对象
gl.enableVertexAttribArray(a_Position); //获取着色器中attribute变量a_Color的地址
var a_Color = gl.getAttribLocation(gl.program, 'a_Color');
if(a_Color < 0) {
console.log('Failed to get the storage location of a_Color');
return -1;
}
// 将缓冲区对象分配给a_Color变量
gl.vertexAttribPointer(a_Color, 3, gl.FLOAT, false, FSIZE * 5, FSIZE * 2);
// 连接a_Color变量与分配给它的缓冲区对象
gl.enableVertexAttribArray(a_Color);

可以看到创建缓冲区对象、将缓冲区对象绑定到目标、向缓冲区对象写入数据这三个步骤都是一致的。但分配attribute变量和连接attribute变量这两个步骤分别进行了两次。其中的关键点就在于gl.vertexAttribPointer()这个函数。之前使用这个函数都是使用的默认值,这里通过设置步进和偏移值,分别访问了缓冲区中不同的数据。

通过gl.vertexAttribPointer()函数定义可以知道,传送到缓冲区的数据是2(size)的位置数据和3(size)的颜色数据,所以步进参数stride都是5(size)。第一次传送位置数据的时候是从初始位置开始的,所以offset是0;而第二次传送颜色数据的时候需要偏移第一个位置数据,所以offfset是2(size)。

2) varying变量

在之前的教程(《WebGL简易教程(二):向着色器传输数据》)中提到,可以传送数据给片元着色器,来给绘制场景赋予颜色。但是这里却通过缓冲区把数据传递给了顶点着色器。因此,在这里给顶点着色器和片元着色器,分别定义了一个相同的varying变量:

// 顶点着色器程序
var VSHADER_SOURCE =

'varying vec4 v_Color;\n' +
'void main() {\n' +

' v_Color = a_Color;\n' +
'}\n'; // 片元着色器程序
var FSHADER_SOURCE =

'varying vec4 v_Color;\n' +
'void main() {\n' +
' gl_FragColor = v_Color;\n' +
'}\n';

varying变量表达的正是一种可变的变量,它的作用就是从顶点着色器向片元着色器传输数据。在顶点着色器的main函数中,将从缓冲区对象中获取的attribute变量a_Color赋值给预先定义的varying变量v_Color;同时在片元着色器中又定义了一个同类型同名的varying变量v_Color,那么顶点着色器中该变量的值就会自动传入到片元着色器中。最后在片元着色器的main函数中将该值传入到gl_FragColor中,就得到最终的结果了。其示意图如下:

3. 结果

最后的运行结果如下,最后会发现得到了一个颜色平滑过渡的,三个角各是红、绿、蓝颜色的三角形:

4. 理解

1) 图形装配和光栅化

更进一步思考下,这里虽然给每个顶点赋予的颜色值,但是为什么三角形的表面都赋予了颜色,并且是平滑过渡的效果呢?其实这里省略了顶点着色器与片元着色器之间数据传输细节——图形装配和光栅化。

点组成线,线组成面,将孤立的点组成基本图形(图元)的过程就是图形装配。图形装配的输入数据就是顶点着色器中gl_Position得到的值,由gl.drawArrays()中第一个参数值来确定装配成什么样的图元。在这个例子中,顶点着色器告诉WebGL系统,准备了三个点,WebGL通过图像装配,将其装配成三角形。

知道装配的图形还是不够的,理论上的三角形是连续不断的图形,而一般的图形显示设备都是离散的片元(像素)。图像转换成片元,就是光栅化的过程。

图形装配和光栅化的示意图如下:

2) 内插过程

在第二节详解示例中的代码时,提到了顶点着色器和片元着色都定义了相同的varying变量v_Color,数据就会从顶点着色器传入到片元着色器。但其实两者虽然同名,但并不是一回事。在顶点着色器中,这个varying变量是与顶点相关的值,而经过图形装配和光栅化后,片元着色器的varying变量就是与片元相关的值了。并且,这个值是经过内插过程得到的。

在这个例子中,给三个顶点赋予了三个不同的颜色值。WebGL就根据三个顶点的颜色值内插了三角形中每个片元(像素)的颜色值,并传递给片元着色器。所谓内插过程,可以想象成一条渐变色带,知道确定了起止颜色,就能获取中间任意位置的颜色。

5. 参考

本来部分代码和插图来自《WebGL编程指南》。

代码和数据地址

上一篇

目录

下一篇

WebGL简易教程(四):颜色的更多相关文章

  1. WebGL简易教程——目录

    目录 1. 绪论 2. 目录 3. 资源 1. 绪论 最近研究WebGL,看了<WebGL编程指南>这本书,结合自己的专业知识写的一系列教程.之前在看OpenGL/WebGL的时候总是感觉 ...

  2. WebGL简易教程(十四):阴影

    目录 1. 概述 2. 示例 2.1. 着色器部分 2.1.1. 帧缓存着色器 2.1.2. 颜色缓存着色器 2.2. 绘制部分 2.2.1. 整体结构 2.2.2. 具体改动 3. 结果 4. 参考 ...

  3. WebGL简易教程(九):综合实例:地形的绘制

    目录 1. 概述 2. 实例 2.1. TerrainViewer.html 2.2. TerrainViewer.js 3. 结果 4. 参考 1. 概述 在上一篇教程<WebGL简易教程(八 ...

  4. WebGL简易教程(十):光照

    目录 1. 概述 2. 原理 2.1. 光源类型 2.2. 反射类型 2.2.1. 环境反射(enviroment/ambient reflection) 2.2.2. 漫反射(diffuse ref ...

  5. WebGL简易教程(二):向着色器传输数据

    目录 1. 概述 2. 示例:绘制一个点(改进版) 1) attribute变量 2) uniform变量 3) varying变量 3. 结果 4. 参考 1. 概述 在上一篇教程<WebGL ...

  6. WebGL简易教程(三):绘制一个三角形(缓冲区对象)

    目录 1. 概述 2. 示例:绘制三角形 1) HelloTriangle.html 2) HelloTriangle.js 3) 缓冲区对象 (1) 创建缓冲区对象(gl.createBuffer( ...

  7. WebGL简易教程(六):第一个三维示例(使用模型视图投影变换)

    目录 1. 概述 2. 示例:绘制多个三角形 2.1. Triangle_MVPMatrix.html 2.2. Triangle_MVPMatrix.js 2.2.1. 数据加入Z值 2.2.2. ...

  8. WebGL简易教程(七):绘制一个矩形体

    目录 1. 概述 2. 示例 2.1. 顶点索引绘制 2.2. MVP矩阵设置 2.2.1. 模型矩阵 2.2.2. 投影矩阵 2.2.3. 视图矩阵 2.2.4. MVP矩阵 3. 结果 4. 参考 ...

  9. WebGL简易教程(八):三维场景交互

    目录 1. 概述 2. 实例 2.1. 重绘刷新 2.2. 鼠标事件调整参数 3. 结果 4. 参考 1. 概述 在上一篇教程<WebGL简易教程(七):绘制一个矩形体>中,通过一个绘制矩 ...

随机推荐

  1. Go中的命名规范

    1.命名规范 1.1 Go是一门区分大小写的语言. 命名规则涉及变量.常量.全局函数.结构.接口.方法等的命名. Go语言从语法层面进行了以下限定:任何需要对外暴露的名字必须以大写字母开头,不需要对外 ...

  2. 建立第一个G2图表

    Step1:引进G2脚本 方法一:引入在线脚本 <script src="https://gw.alipayobjects.com/os/lib/antv/g2/3.4.10/dist ...

  3. LK的NOIP膜拟赛

    T1 Learn to 签到 [题目描述] 希希最喜欢二进制了.希希最喜欢的运算是\(\wedge\). 希希还喜欢很多\(01\)序列.这些序列一共有\(n\)个,每个的长度为\(m\). 希希有一 ...

  4. 安利一个免费下载VIP文档神器

    今天安利给大伙一个非非非常好用的可以免费下载VIP文档的下载神器------冰点文库下载器,用过的人都说好.操作简单,小巧轻便,完全免费.支持百度.豆丁.畅享.mbalib.hp009.max.boo ...

  5. Python装饰器完全解读

    1 引言 装饰器(Decorators)可能是Python中最难掌握的概念之一了,也是最具Pythonic特色的技巧,深入理解并应用装饰器,你会更加感慨——人生苦短,我用Python. 2 初步理解装 ...

  6. Java并发之内存模型(JMM)浅析

    背景 学习Java并发编程,JMM是绕不过的槛.在Java规范里面指出了JMM是一个比较开拓性的尝试,是一种试图定义一个一致的.跨平台的内存模型.JMM的最初目的,就是为了能够支多线程程序设计的,每个 ...

  7. 数据算法 --hadoop/spark数据处理技巧 --(13.朴素贝叶斯 14.情感分析)

    十三.朴素贝叶斯 朴素贝叶斯是一个线性分类器.处理数值数据时,最好使用聚类技术(eg:K均值)和k-近邻方法,不过对于名字.符号.电子邮件和文本的分类,则最好使用概率方法,朴素贝叶斯就可以.在某些情况 ...

  8. 纯 CSS 实现绘制各种三角形(各种角度)

    一.前言 三角形实现原理:宽度width为0:height为0:(1)有一条横竖边(上下左右)的设置为border-方向:长度 solid red,这个画的就是底部的直线.其他边使用border-方向 ...

  9. 分享各大CMS采集资源站网址合集

    分享各大CMS采集资源站网址合集 http://www.172zy.xyz/ 172云资源 http://www.dbzyz.com/ 豆瓣云资源 http://www.gaoqingzy.com/ ...

  10. TokuDB · 引擎特性 · HybridDB for MySQL高压缩引擎TokuDB 揭秘

    原文出处:阿里云RDS-数据库内核组 HybridDB for MySQL(原名petadata)是面向在线事务(OLTP)和在线分析(OLAP)混合场景的关系型数据库.HybridDB采用一份数据存 ...