# encoding:UTF-8
import xlsxwriter
import datetime
import pymysql
import numpy as np
import pandas __author__ = 'sanjing'
__data__ = '2019/06/14' averagesql = """
select from_unixtime(clock,'%Y-%m-%d') as time,
count(DISTINCT eventid) as id
from alerts
WHERE mediatypeid = 5
AND message LIKE '%告警等级: Average%'
AND SUBJECT LIKE '%PROBLEM%'
AND clock BETWEEN UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 7 DAY)) AND UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 1 DAY))
group by time
order by time asc """ highsql = """
select from_unixtime(clock,'%Y-%m-%d') as time,
count(DISTINCT eventid) as id
from alerts
WHERE mediatypeid = 5
AND message LIKE '%告警等级: High%'
AND SUBJECT LIKE '%PROBLEM%'
AND clock BETWEEN UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 7 DAY)) AND UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 1 DAY))
group by time
order by time asc
""" warningsql = """
select from_unixtime(clock,'%Y-%m-%d') as time,
count(DISTINCT eventid) as id
from alerts
WHERE mediatypeid = 5
AND message LIKE '%告警等级: Warning%'
AND SUBJECT LIKE '%PROBLEM%'
AND clock BETWEEN UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 7 DAY)) AND UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 1 DAY))
group by time
order by time asc
""" informationsql = """
select from_unixtime(clock,'%Y-%m-%d') as time,
count(DISTINCT eventid) as id
from alerts
WHERE mediatypeid = 5
AND message LIKE '%告警等级: Information%'
AND SUBJECT LIKE '%PROBLEM%'
AND clock BETWEEN UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 7 DAY)) AND UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 1 DAY))
group by time
order by time asc
""" disastersql = """
select from_unixtime(clock,'%Y-%m-%d') as time,
count(DISTINCT eventid) as id
from alerts
WHERE mediatypeid = 5
AND message LIKE '%告警等级: Diasater%'
AND SUBJECT LIKE '%PROBLEM%'
AND clock BETWEEN UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 7 DAY)) AND UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 1 DAY))
group by time
order by time asc
""" #连接MySQL数据库
def get_count(sql):
conn=pymysql.connect("xx.xx.xx.xx", "readonly", "xxxx", "zabbix", charset='utf8')
cursor = conn.cursor()
cursor.execute(sql)
count = cursor.fetchall()
# 将rows转化为数组
rows = np.array(count)
conn.close()
return count def coloum(data, weekendtime):
#创建一个excel文件
workbook = xlsxwriter.Workbook(weekendtime +".xlsx")
#创建一个工作表,默认sheet1
worksheet = workbook.add_worksheet()
bold = workbook.add_format({'bold': 1})
#表头 title = ['告警级别', '星期一','星期二','星期三','星期四','星期五','星期六','星期日']
#列名
buname = ['information', 'warning','average', 'high', 'disaster']
# 定义数据formatter格式对象,设置边框加粗1像素
formatter = workbook.add_format()
formatter.set_border(1)
#定义格式:# 定义标题栏格式对象:边框加粗1像素,背景色为灰色,单元格内容居中、加粗
title_formatter = workbook.add_format()
title_formatter.set_border(1)
title_formatter.set_bg_color('#cccccc')
title_formatter.set_align('center')
title_formatter.set_bold()
chart_col = workbook.add_chart({'type': 'column'})
def chart_series(row):
chart_col.add_series(
{
'categories': '=Sheet1!$B$1:$H$1',
'values': '=Sheet1!$B${}:$H${}'.format(row, row),
'line': {'color': 'black'},
# 'name': '=Sheet1!$A${}'.format(row)
'name': '=Sheet1!$A$' + row
}
)
# 下面分别以行和列的方式将标题栏、业务名称、流量数据写入单元格,并引用不同的格式对象
worksheet.write_row('A1',title,title_formatter)
worksheet.write_column('A2',buname,formatter)
for i in range (2,7):
worksheet.write_row('B{}'.format(i),data[i-2],formatter)
print (i)
chart_series(str(i)) # 设置图表的title 和 x,y轴信息
chart_col.set_title({'name': '告警统计/周'})
chart_col.set_x_axis({'name': '告警级别'})
chart_col.set_y_axis({'name': '告警次数'})
# 设置图表的风格
# chart_col.set_style(37) # 把图表插入到worksheet以及偏移
worksheet.insert_chart('A10', chart_col, {'x_offset': 25, 'y_offset': 10})
workbook.close()
#判断二维元组是否为空,长度是否满足要求,不满足则补0.
#输入为一个字典,判断是否为空,空则添加数据
def covertdata(jsondata,weektime): listkey = list(jsondata.keys())
for i in weektime:
j = i.strftime("%Y-%m-%d")
if listkey:
if j not in listkey:
jsondata[j] = ""
else:
jsondata[j] = ""
# print (jsondata)
#按照时间对字典进行排序
sort = sorted(jsondata.items(), key=lambda d: d[0])
#将第二列取出来并转为列表
array = np.array(sort)
array2 = array[:, 1]
list2 = array2.tolist()
list3 = list(map(lambda x: float(x), list2))
return list3
# print (list2) if __name__ == '__main__':
yesterday = (datetime.date.today() + datetime.timedelta(days=-1)).strftime("%Y-%m-%d")
weeklist = pandas.date_range(end=yesterday, periods=7)
informationdata = get_count(informationsql)
informationlist = covertdata(dict(informationdata),weeklist)
warningdata = get_count(warningsql)
warninglist = covertdata(dict(warningdata),weeklist)
averagedata = get_count(averagesql)
averagelist = covertdata(dict(averagedata),weeklist)
highdata = get_count(highsql)
highlist = covertdata(dict(highdata),weeklist)
disasterdata = get_count(disastersql)
disasterlist = covertdata(dict(disasterdata),weeklist)
# print (informationlist)
# print (warninglist)
# print (averagelist)
# print (highlist)
# print (disasterlist)
data1 = [informationlist, warninglist, averagelist, highlist, disasterlist]
coloum(data1,yesterday)

结果如图:

zabbix获取一周内各个等级告警的次数的更多相关文章

  1. iOS:获取一周7天的日期(年-月-日-星期)

    一.介绍 在开发中,日期的使用绝对是离不了的,跟业务的关联性太强了,例如课程表.有的时候我们不需要课程表,但是需要获取一周7天的日期,这一周内的日期,我觉得有两种理解: 1.获取当天开始的一周日期,当 ...

  2. Servlet 利用Cookie实现一周内不重复登录

    import java.io.IOException;import java.io.PrintWriter; import javax.servlet.ServletException;import ...

  3. [Java] 获取本月周次和日期时间段信息

    package com.wdcloud.monitoring.common; import java.text.SimpleDateFormat; import java.util.ArrayList ...

  4. Android JAVA如何判断两天在同一周内

    /** * <pre> * 判断date和当前日期是否在同一周内 * 注: * Calendar类提供了一个获取日期在所属年份中是第几周的方法,对于上一年末的某一天 * 和新年初的某一天在 ...

  5. JavaWeb 08_JSP+Dao+Bean+Servlet 实现登录注册(连接数据库,验证码登录,两周内免登陆等功能)

    一.数据库db_01   表usert   字段username,password 二. 目录 三. 配置信息 四. 代码 index.jsp <script type="text/j ...

  6. Servlet课程0426(十一)Servlet Cookie实现两周内不用重复登录

    Welcome.java //登录界面 package com.tsinghua; import javax.servlet.http.*; import java.io.*; import java ...

  7. js 获取每月有几周,根据年月周获取该周从周一到周日的日期等方法

    本文基于react-native 本人在用react-native写一个关于课程表的APP时需要课程表按照日期周期显示,网上查了许多方法,都没有达到自己想要的效果,根据一些方法的参考,再根据自己思维写 ...

  8. PHP获取一周的日期

    /** * 获取一周日期 * @param $time 时间戳 * @param $format 转换格式 */ function get_week($time, $format = "Y- ...

  9. oracle 根据一个时间段获取这个时间段内所有月份、天数、日期

    注:本文来源于< oracle 根据一个时间段获取这个时间段内所有月份.天数.日期 > 获取月份列表: SELECT TO_CHAR(ADD_MONTHS(TO_DATE('2014-10 ...

随机推荐

  1. nginx反向代理 和部分优化

    准备环境  : 两台web服务     安装http  写入文档  并启动 yum -y install httpd echo "192.168.2.100" > /var/ ...

  2. 学习之Redis(一)

    一.redis简介 一般学习,最好先去官网,之所以建议看官网,是因为这是一手的学习资料,其他资料都最多只能算二手,一手资料意味着最权威,准确性最高.https://redis.io/topics/in ...

  3. springboot+mybatis sql 打印在控制台

    第一种方法 在mybatis文件夹下新建mybatis-config.xml <?xml version="1.0" encoding="UTF-8" ? ...

  4. Spring Cloud第六篇 | Hystrix仪表盘监控Hystrix Dashboard

    本文是Spring Cloud专栏的第六篇文章,了解前五篇文章内容有助于更好的理解本文: Spring Cloud第一篇 | Spring Cloud前言及其常用组件介绍概览 Spring Cloud ...

  5. iOS-使用Xcode自带单元测试UnitTest

    ![Uploading QQ20160129-3_262826.png . . .]####什么是单元测试?一听到单元测试这个词感觉很高端,其实单元测试就是为你的方法多专门写一个测试函数.以保证你的方 ...

  6. React-Native项目在Android真机上调试

    目录 1.确保你的设备已经成功连接.可以终端输入adb devices来查看: 2.终端运行npm start 开启本地服务,成功后运行react-native run-android来在设备上安装并 ...

  7. 洛谷 P2254 [NOI2005]瑰丽华尔兹(单调栈优化DP)

    题目描述 不妨认为舞厅是一个N行M列的矩阵,矩阵中的某些方格上堆放了一些家具,其他的则是空地.钢琴可以在空地上滑动,但不能撞上家具或滑出舞厅,否则会损坏钢琴和家具,引来难缠的船长.每个时刻,钢琴都会随 ...

  8. Balls in the Boxes

    Description Mr. Mindless has many balls and many boxes,he wants to put all the balls into some of th ...

  9. CSU oj 2092-Space Golf

    You surely have never heard of this new planet surface exploration scheme, as it is being carried ou ...

  10. sql service 从创建访问用户到数据库访问 【SQL】

    create login [LoginMame] with password=[Pwd]--创建数据库登陆用户 create user [DBLoginName] for login [LoginMa ...