zabbix获取一周内各个等级告警的次数
# encoding:UTF-8
import xlsxwriter
import datetime
import pymysql
import numpy as np
import pandas __author__ = 'sanjing'
__data__ = '2019/06/14' averagesql = """
select from_unixtime(clock,'%Y-%m-%d') as time,
count(DISTINCT eventid) as id
from alerts
WHERE mediatypeid = 5
AND message LIKE '%告警等级: Average%'
AND SUBJECT LIKE '%PROBLEM%'
AND clock BETWEEN UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 7 DAY)) AND UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 1 DAY))
group by time
order by time asc """ highsql = """
select from_unixtime(clock,'%Y-%m-%d') as time,
count(DISTINCT eventid) as id
from alerts
WHERE mediatypeid = 5
AND message LIKE '%告警等级: High%'
AND SUBJECT LIKE '%PROBLEM%'
AND clock BETWEEN UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 7 DAY)) AND UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 1 DAY))
group by time
order by time asc
""" warningsql = """
select from_unixtime(clock,'%Y-%m-%d') as time,
count(DISTINCT eventid) as id
from alerts
WHERE mediatypeid = 5
AND message LIKE '%告警等级: Warning%'
AND SUBJECT LIKE '%PROBLEM%'
AND clock BETWEEN UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 7 DAY)) AND UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 1 DAY))
group by time
order by time asc
""" informationsql = """
select from_unixtime(clock,'%Y-%m-%d') as time,
count(DISTINCT eventid) as id
from alerts
WHERE mediatypeid = 5
AND message LIKE '%告警等级: Information%'
AND SUBJECT LIKE '%PROBLEM%'
AND clock BETWEEN UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 7 DAY)) AND UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 1 DAY))
group by time
order by time asc
""" disastersql = """
select from_unixtime(clock,'%Y-%m-%d') as time,
count(DISTINCT eventid) as id
from alerts
WHERE mediatypeid = 5
AND message LIKE '%告警等级: Diasater%'
AND SUBJECT LIKE '%PROBLEM%'
AND clock BETWEEN UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 7 DAY)) AND UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 1 DAY))
group by time
order by time asc
""" #连接MySQL数据库
def get_count(sql):
conn=pymysql.connect("xx.xx.xx.xx", "readonly", "xxxx", "zabbix", charset='utf8')
cursor = conn.cursor()
cursor.execute(sql)
count = cursor.fetchall()
# 将rows转化为数组
rows = np.array(count)
conn.close()
return count def coloum(data, weekendtime):
#创建一个excel文件
workbook = xlsxwriter.Workbook(weekendtime +".xlsx")
#创建一个工作表,默认sheet1
worksheet = workbook.add_worksheet()
bold = workbook.add_format({'bold': 1})
#表头 title = ['告警级别', '星期一','星期二','星期三','星期四','星期五','星期六','星期日']
#列名
buname = ['information', 'warning','average', 'high', 'disaster']
# 定义数据formatter格式对象,设置边框加粗1像素
formatter = workbook.add_format()
formatter.set_border(1)
#定义格式:# 定义标题栏格式对象:边框加粗1像素,背景色为灰色,单元格内容居中、加粗
title_formatter = workbook.add_format()
title_formatter.set_border(1)
title_formatter.set_bg_color('#cccccc')
title_formatter.set_align('center')
title_formatter.set_bold()
chart_col = workbook.add_chart({'type': 'column'})
def chart_series(row):
chart_col.add_series(
{
'categories': '=Sheet1!$B$1:$H$1',
'values': '=Sheet1!$B${}:$H${}'.format(row, row),
'line': {'color': 'black'},
# 'name': '=Sheet1!$A${}'.format(row)
'name': '=Sheet1!$A$' + row
}
)
# 下面分别以行和列的方式将标题栏、业务名称、流量数据写入单元格,并引用不同的格式对象
worksheet.write_row('A1',title,title_formatter)
worksheet.write_column('A2',buname,formatter)
for i in range (2,7):
worksheet.write_row('B{}'.format(i),data[i-2],formatter)
print (i)
chart_series(str(i)) # 设置图表的title 和 x,y轴信息
chart_col.set_title({'name': '告警统计/周'})
chart_col.set_x_axis({'name': '告警级别'})
chart_col.set_y_axis({'name': '告警次数'})
# 设置图表的风格
# chart_col.set_style(37) # 把图表插入到worksheet以及偏移
worksheet.insert_chart('A10', chart_col, {'x_offset': 25, 'y_offset': 10})
workbook.close()
#判断二维元组是否为空,长度是否满足要求,不满足则补0.
#输入为一个字典,判断是否为空,空则添加数据
def covertdata(jsondata,weektime): listkey = list(jsondata.keys())
for i in weektime:
j = i.strftime("%Y-%m-%d")
if listkey:
if j not in listkey:
jsondata[j] = ""
else:
jsondata[j] = ""
# print (jsondata)
#按照时间对字典进行排序
sort = sorted(jsondata.items(), key=lambda d: d[0])
#将第二列取出来并转为列表
array = np.array(sort)
array2 = array[:, 1]
list2 = array2.tolist()
list3 = list(map(lambda x: float(x), list2))
return list3
# print (list2) if __name__ == '__main__':
yesterday = (datetime.date.today() + datetime.timedelta(days=-1)).strftime("%Y-%m-%d")
weeklist = pandas.date_range(end=yesterday, periods=7)
informationdata = get_count(informationsql)
informationlist = covertdata(dict(informationdata),weeklist)
warningdata = get_count(warningsql)
warninglist = covertdata(dict(warningdata),weeklist)
averagedata = get_count(averagesql)
averagelist = covertdata(dict(averagedata),weeklist)
highdata = get_count(highsql)
highlist = covertdata(dict(highdata),weeklist)
disasterdata = get_count(disastersql)
disasterlist = covertdata(dict(disasterdata),weeklist)
# print (informationlist)
# print (warninglist)
# print (averagelist)
# print (highlist)
# print (disasterlist)
data1 = [informationlist, warninglist, averagelist, highlist, disasterlist]
coloum(data1,yesterday)
结果如图:

zabbix获取一周内各个等级告警的次数的更多相关文章
- iOS:获取一周7天的日期(年-月-日-星期)
一.介绍 在开发中,日期的使用绝对是离不了的,跟业务的关联性太强了,例如课程表.有的时候我们不需要课程表,但是需要获取一周7天的日期,这一周内的日期,我觉得有两种理解: 1.获取当天开始的一周日期,当 ...
- Servlet 利用Cookie实现一周内不重复登录
import java.io.IOException;import java.io.PrintWriter; import javax.servlet.ServletException;import ...
- [Java] 获取本月周次和日期时间段信息
package com.wdcloud.monitoring.common; import java.text.SimpleDateFormat; import java.util.ArrayList ...
- Android JAVA如何判断两天在同一周内
/** * <pre> * 判断date和当前日期是否在同一周内 * 注: * Calendar类提供了一个获取日期在所属年份中是第几周的方法,对于上一年末的某一天 * 和新年初的某一天在 ...
- JavaWeb 08_JSP+Dao+Bean+Servlet 实现登录注册(连接数据库,验证码登录,两周内免登陆等功能)
一.数据库db_01 表usert 字段username,password 二. 目录 三. 配置信息 四. 代码 index.jsp <script type="text/j ...
- Servlet课程0426(十一)Servlet Cookie实现两周内不用重复登录
Welcome.java //登录界面 package com.tsinghua; import javax.servlet.http.*; import java.io.*; import java ...
- js 获取每月有几周,根据年月周获取该周从周一到周日的日期等方法
本文基于react-native 本人在用react-native写一个关于课程表的APP时需要课程表按照日期周期显示,网上查了许多方法,都没有达到自己想要的效果,根据一些方法的参考,再根据自己思维写 ...
- PHP获取一周的日期
/** * 获取一周日期 * @param $time 时间戳 * @param $format 转换格式 */ function get_week($time, $format = "Y- ...
- oracle 根据一个时间段获取这个时间段内所有月份、天数、日期
注:本文来源于< oracle 根据一个时间段获取这个时间段内所有月份.天数.日期 > 获取月份列表: SELECT TO_CHAR(ADD_MONTHS(TO_DATE('2014-10 ...
随机推荐
- java基础文件,File类
此文参考自"Java SE程序设计" 编著: 青岛东合信息技术有限公司 算是做笔记,以后想看可以翻阅,顺便分享出来大家可以参照.如有侵权,请联系本人删除 文件 文件是相关记录或放在 ...
- SpringMVC Mock测试
什么是mock测试? 在测试过程中,对于某些不容易构成或者不容易获取的对象,用一个虚拟的对象来创建以便测试的测试方法,就是Mock测试. Servlet.Request.Response等Servle ...
- Light oj 1140 How Many Zeroes?
Jimmy writes down the decimal representations of all natural numbers between and including m and n, ...
- protobuf-rpm
############################################################## # http://www.rpm.org/max-rpm/ch-rpm-i ...
- Day 05 文本处理和爬虫基础1
目录 什么是文件 什么是文本 如何通过文本编辑器控制.txt文件 打开文件的三种模式 t和b模式 高级应用 文本处理 + 词云分析 效果如下 爬虫原理 requests模块 re模块 爬取图片 爬取视 ...
- CSS中的变量使用,var()语法
参考博客:https://blog.csdn.net/qq_34206361/article/details/53690414
- angular实现draggable拖拽
前言:最近项目要实现一个拖拽功能,我在网上开始了各类搜寻,虽然后面因为数据原因舍弃了拖拽的这一需求,但是为了不辜负最近的研究,还是来记录一下. 场景需求:面试预约选时间节点,候选人之间是可以相互交换的 ...
- Java堆的结构是什么样子的?什么是堆中的永久代(Perm Gen space)?
JVM的堆是运行时数据区,所有类的实例和数组都是在堆上分配内存.它在JVM启动的时候被创建.对象所占的堆内存是由自动内存管理系统也就是垃圾收集器回收. 堆内存是由存活和死亡的对象组成的.存活的对象是应 ...
- 《大话设计模式》——简单工厂模式(Python版)
简单工厂模式(Simple Factory Pattern):是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类. 例: 使用Python设计一个控制台计算器,要求输入两个数 ...
- 设备数据通过Azure Functions 推送到 Power BI 数据大屏进行展示(2.Azure Functions实战)
本案例适用于开发者入门理解Azure Functions/ IoT Hub / Service Bus / Power BI等几款产品. 主要实战的内容为: 将设备遥测数据上传到物联网中心, 将遥测数 ...