洛谷P2265 路边的水沟
题目
题目背景
LYQ市有一个巨大的水沟网络,可以近似看成一个n*m的矩形网格,网格的每个格点都安装了闸门,我们将从水沟网络右下角的闸门到左上角的闸门的一条路径称为水流。
题目描述
现给定水沟网的长和宽,求该水沟网中所有只包含向左和向上移动的水流数量。
输入输出格式
输入格式:
输入共1行,包含两个整数n和m。
输出格式:
输出一个数字ans,即水流的数量。由于答案可能很大,请输出答案对1000000007取模的结果。
分析:
由题意推理得:
Cn+mn=(n+m)!n!m!C^{n}_{n+m}=\frac{(n+m)!}{n!m!}Cn+mn=n!m!(n+m)!
但是我们看一下数据范围:n,m<=1000000n,m<=1000000n,m<=1000000
妈呀,这样咋除呀。
这个时候我们就要引入一个东东:
乘法逆元
说白了一个数的乘法逆元就是他的倒数。。。
其他百度一下就行。
用乘法逆元有啥好处?
ans:可以再弄个费马小定理后用快速幂迅速解决。
那么快速幂是啥?
就比如说39=38∗3=322∗3∗343^9=3^8*3={3^2}^2*3*3^439=38∗3=322∗3∗34等等减少运算次数的,仍可百度。
那么主要思路就出来了:把推出的那个Cn+mn=(n+m)!n!m!C^{n}_{n+m}=\frac{(n+m)!}{n!m!}Cn+mn=n!m!(n+m)!的除号下面的部分转换为他的逆元,通过费马小定理写出幂的形式,然后用快速幂迅速求出。
上代码
代码:
#include<cstdio>
const int mod=1000000007;
long long f(long long n) //计算一波阶乘
{
long long sum=1;
for(long long i=1;i<=n;i++)
sum=sum*i%mod;
return sum;
}
long long pow(long long n,long long p)//快速幂
{
if(!p)//a^0=1 (a!=0)
return 1;
long long tmp=pow(n,p>>1)%mod;
if(p&1) //即判断是否p%2==1
return tmp*tmp%mod*n%mod;
else
return tmp*tmp%mod;
}
long long inv(long long x)
{
return pow(x,mod-2);//取其逆元,费马小定理
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
printf("%d",(int)(f(n+m)*inv(f(n))%mod*inv(f(m))%mod));//计算公式:
return 0;
}
求关注
洛谷P2265 路边的水沟的更多相关文章
- 【数论】【组合数】【快速幂】【乘法逆元】洛谷 P2265 路边的水沟
从左上角到右下角,共经过n+m个节点,从其中选择n各节点向右(或者m各节点向下),所以答案就是C(n+m,n)或者C(n+m,m),组合数暴力算即可,但是要取模,所以用了乘法逆元. #include& ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP
题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...
- 洛谷P1710 地铁涨价
P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交 讨论 题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...
- 洛谷P1371 NOI元丹
P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交 讨论 题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...
- 洛谷P1538迎春舞会之数字舞蹈
题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...
- 洛谷八月月赛Round1凄惨记
个人背景: 上午9:30放学,然后因为学校举办读书工程跟同学去书城选书,中午回来开始打比赛,下午又回老家,中间抽出一点时间调代码,回家已经8:50了 也许是7月月赛时“连蒙带骗”AK的太幸运然而因同学 ...
随机推荐
- vmstat命令浅析
vmstat命令是最常见的Linux/Unix监控工具,可以展现给定时间间隔的服务器的状态值,包括服务器的CPU使用率,内存使用,虚拟内存交换情况,IO读写情况.这个命令是我查看Linux/Unix最 ...
- 传入字典的模型项的类型为“System.Boolean”,但此字典需要类型“InternalCRM.EntityIACrm.Template”的模型项。
“/”应用程序中的服务器错误. 传入字典的模型项的类型为“System.Boolean”,但此字典需要类型“InternalCRM.EntityIACrm.Template”的模型项. 说明: 执行当 ...
- scons编译mongodb(vs2008版本)遇到的问题总结
OS:win7 64 boost:1.49 mongodb:2.4.6(推荐64位版本,当然如果你系统是32位的,只能使用32的版本了) IDE:vs2008(2010的同学请跳过吧,因为官网提供的就 ...
- BI-学习之 商业智能项目工具安装
首先咱们先需要下载一个工具,Microsoft SQL Server Data Tools - Business Intelligence for Visual Studio 2012并安装: 我目前 ...
- Hadoop集群(第6期)JDK和SSH无密码配置
1.Linux配置java环境变量 1.1 解压安装jdk 在shell终端下进入jdk-6u14-linux-i586.bin文件所在目录,执行命令 ./jdk-6u14-linux-i586.bi ...
- vue.js实现单选框、复选框和下拉框
Vue.js可以很方便的实现数据双向绑定,所以在处理表单,人机交互方面具有很大的优势.下边以单选框.复选框和下拉框为例介绍他们在HTML和Vue.js中的具体实现方式. 一.单选框 在传统的HTM ...
- 基于 ZooKeeper 搭建 Spark 高可用集群
一.集群规划 二.前置条件 三.Spark集群搭建 3.1 下载解压 3.2 配置环境变量 3.3 集群配置 3.4 安装包分发 四.启 ...
- sentinel 滑动窗口统计机制
sentinel的滑动窗口统计机制就是根据当前时间,获取对应的时间窗口,并更新该时间窗口中的各项统计指标(pass/block/rt等),这些指标被用来进行后续判断,比如限流.降级等:随着时间的推移, ...
- PWN菜鸡入门之栈溢出 (2)—— ret2libc与动态链接库的关系
准备知识引用自https://www.freebuf.com/articles/rookie/182894.html 0×01 利用思路 ret2libc 这种攻击方式主要是针对 动态链接(Dynam ...
- 使用ln -s解决库冲突的问题
1. linux系统下软连接ln -s的使用方法: 软连建立:ln -s 源文件 软链接文件 对源文件创建软连接文件,举例说明 举例: 当前目录是/local,而我经常要访问/usr/local/ ...