题目

题目背景

LYQ市有一个巨大的水沟网络,可以近似看成一个n*m的矩形网格,网格的每个格点都安装了闸门,我们将从水沟网络右下角的闸门到左上角的闸门的一条路径称为水流。

题目描述

现给定水沟网的长和宽,求该水沟网中所有只包含向左和向上移动的水流数量。

输入输出格式

输入格式:

输入共1行,包含两个整数n和m。

输出格式:

输出一个数字ans,即水流的数量。由于答案可能很大,请输出答案对1000000007取模的结果。

分析:

由题意推理得:

Cn+mn=(n+m)!n!m!C^{n}_{n+m}=\frac{(n+m)!}{n!m!}Cn+mn​=n!m!(n+m)!​

但是我们看一下数据范围:n,m&lt;=1000000n,m&lt;=1000000n,m<=1000000

妈呀,这样咋除呀。

这个时候我们就要引入一个东东:

乘法逆元

说白了一个数的乘法逆元就是他的倒数。。。

其他百度一下就行。

用乘法逆元有啥好处?

ans:可以再弄个费马小定理后用快速幂迅速解决。

那么快速幂是啥?

就比如说39=38∗3=322∗3∗343^9=3^8*3={3^2}^2*3*3^439=38∗3=322∗3∗34等等减少运算次数的,仍可百度。

那么主要思路就出来了:把推出的那个Cn+mn=(n+m)!n!m!C^{n}_{n+m}=\frac{(n+m)!}{n!m!}Cn+mn​=n!m!(n+m)!​的除号下面的部分转换为他的逆元,通过费马小定理写出幂的形式,然后用快速幂迅速求出。

上代码

代码:

#include<cstdio>
const int mod=1000000007;
long long f(long long n) //计算一波阶乘
{
long long sum=1;
for(long long i=1;i<=n;i++)
sum=sum*i%mod;
return sum;
}
long long pow(long long n,long long p)//快速幂
{
if(!p)//a^0=1 (a!=0)
return 1;
long long tmp=pow(n,p>>1)%mod;
if(p&1) //即判断是否p%2==1
return tmp*tmp%mod*n%mod;
else
return tmp*tmp%mod;
}
long long inv(long long x)
{
return pow(x,mod-2);//取其逆元,费马小定理
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
printf("%d",(int)(f(n+m)*inv(f(n))%mod*inv(f(m))%mod));//计算公式:
return 0;
}

求关注

洛谷P2265 路边的水沟的更多相关文章

  1. 【数论】【组合数】【快速幂】【乘法逆元】洛谷 P2265 路边的水沟

    从左上角到右下角,共经过n+m个节点,从其中选择n各节点向右(或者m各节点向下),所以答案就是C(n+m,n)或者C(n+m,m),组合数暴力算即可,但是要取模,所以用了乘法逆元. #include& ...

  2. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  3. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

  4. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  5. 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP

    题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...

  6. 洛谷P1710 地铁涨价

    P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交  讨论  题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...

  7. 洛谷P1371 NOI元丹

    P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交  讨论  题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...

  8. 洛谷P1538迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

  9. 洛谷八月月赛Round1凄惨记

    个人背景: 上午9:30放学,然后因为学校举办读书工程跟同学去书城选书,中午回来开始打比赛,下午又回老家,中间抽出一点时间调代码,回家已经8:50了 也许是7月月赛时“连蒙带骗”AK的太幸运然而因同学 ...

随机推荐

  1. Lua中的协同程序 coroutine(转)

    Lua中的协程和多线程很相似,每一个协程有自己的堆栈,自己的局部变量,可以通过yield-resume实现在协程间的切换.不同之处是:Lua协程是非抢占式的多线程,必须手动在不同的协程间切换,且同一时 ...

  2. Delphi 编写ActiveX控件(OCX控件)的知识和样例(有详细步骤)

    一.ActiveX应用情况简介: ActiveX控件也就是一般所说的OCX控件,它是 ActiveX技术的一部分.ActiveX是微软公司推出的基于组件对象模型COM的技术,包括对Windows 32 ...

  3. clipboard.js在剪切中的使用

    目前只是对文字的复制. 下面的代码解释: 1.html 需要添加data-clipboard="copy"和data-clipboard-target="对象选择器&qu ...

  4. 为何只能在其关联的线程内启动timer?(Qt会检查一致性,否则就不执行)

    为何只能在其关联的线程内启动timer? 在QTimer源码分析(以Windows下实现为例) 一文中,我们谈到: QTimer的是通过QObject的timerEvent()实现的,开启和关闭定时器 ...

  5. 轻量级 Material Design 前端框架 MDUI (纯html,css,与css框架跟react vue不冲突)

    MDUI 是一个轻量级的 Material Design 前端框架,对照着 Material Design 文档进行开发,争取 1:1 实现 Material Design 中的组件. 多主题支持 M ...

  6. React Native v0.4 发布,用 React 编写移动应用

    React Native v0.4 发布,自从 React Native 开源以来,包括超过 12.5k stars,1000 commits,500 issues,380 pull requests ...

  7. 跨越DLL边界传递CRT对象潜在的错误

    跨越DLL边界传递CRT对象潜在的错误 翻译:magictong(童磊)2013年5月 版权:microsoft 原文地址:http://msdn.microsoft.com/en-us/librar ...

  8. Python字典的合并与拆分

    1.字典的合并 dict1={1:[1,11,111],2:[2,22,222]} dict2={3:[3,33,333],4:[4,44,444]} dictMerged2=dict(dict1, ...

  9. ssm中mapper注入失败的传奇经历

    最近因为要测试一个功能,需要用最短的时间来启动服务,开启测试程序,但平常所用的框架中已经集成了各种三方的东西,想着那就再重新搭建一个最简单的ssm框架吧. 搭建可参考:简单ssm最新搭建 搭建过程并不 ...

  10. 【win10家庭版】删除文件提示没有权限最简单的方式(已验证)

    趁着618入了新本本,预装了家庭普通版Win10,但是实际使用中遇到了一些问题.问题不大,但是着实反人类,在此吐槽! 问题: 首先,进入系统会提示你建一个账号,建立完成登录系统.本账户拥有Admini ...