【UOJ#390】【UNR#3】百鸽笼(动态规划,容斥)
【UOJ#390】【UNR#3】百鸽笼(动态规划,容斥)
题面
题解
发现这就是题解里说的:“火山喷发概率问题”(大雾
考虑如果是暴力的话,你需要记录下当前每一个位置的鸽笼数量,因为概率会随着你空的鸽笼的数量而变化。
我们可以把这个问题转变为给一个长度为\(N\)的序列填数的问题。
直接算似乎不是很好算(因为直接算是要钦定在最后,那么其他的东西放满之后每个位置被选择的概率会被改变),我们把最后一个被填满的恰好是\(i\),变成至少有一个集合\(S\)在\(i\)后面被填满。
因为是容斥,其他集合怎么样是无所谓的,所以可以直接丢掉;而\(S\)集合都要在\(i\)后面被填满,所以\(i\)是第一个被填满的,而\(i\)被填满后后面的概率也无所谓,为\(1\),前面又没有减少可以填的数的个数,所以每次填的概率也是一样的。假设\(i\)用完之后的长度为\(L\),那么前面的概率就是\(\frac{1}{(|S|+1)^L}\)。
这样子我们枚举集合之后,枚举集合中一个元素的出现次数,再记录一下总长度什么的,就可以进行转移了。
继续发现上面这个容斥过程中,最终的贡献之和\(|S|\)以及\(L\)相关,所以考虑只记录这两个东西进行转移,就可以优化掉集合的枚举。
然后对于\(n\)个位置每个位置都要算一遍答案,这个很不优秀,发现算两个不同位置的时候只需要在当前背包把新位置的贡献给删掉,再把之前位置的贡献给加进来就好了。
这样子每次位置只会进入背包两次,出背包一次。
复杂度为\(O(n^5)\)。
#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 998244353
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,N,a[35],C[950][950],f[35][950],ipw[35][950];
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
void Insert(int n,int sum,int a)
{
for(int i=n-1;~i;--i)
for(int j=sum;~j;--j)
if(f[i][j])
for(int k=0;k<a;++k)
add(f[i+1][j+k],MOD-1ll*f[i][j]*C[j+k][k]%MOD);
}
void Del(int n,int sum,int a)
{
for(int i=0;i<n;++i)
for(int j=0;j<=sum-a;++j)
if(f[i][j])
for(int k=0;k<a;++k)
add(f[i+1][j+k],1ll*f[i][j]*C[j+k][k]%MOD);
}
int main()
{
n=read();
for(int i=1;i<=n;++i)N+=(a[i]=read());
for(int i=1;i<=n;++i)ipw[i][0]=1;
for(int i=1;i<=n;++i)
for(int j=1,inv=fpow(i,MOD-2);j<=N;++j)
ipw[i][j]=1ll*ipw[i][j-1]*inv%MOD;
for(int i=0;i<=N;++i)C[i][0]=1;
for(int i=1;i<=N;++i)
for(int j=1;j<=i;++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
f[0][0]=1;
for(int i=1,s=0;i<=n;++i)Insert(i,s,a[i]),s+=a[i];
for(int i=1;i<=n;++i)
{
Del(n,N,a[i]);
int ret=0;
for(int j=0;j<n;++j)
for(int k=0;k<=N-a[i];++k)
if(f[j][k])
add(ret,1ll*f[j][k]*ipw[j+1][k+a[i]]%MOD*C[k+a[i]-1][a[i]-1]%MOD);
printf("%d ",ret);
Insert(n,N-a[i],a[i]);
}
puts("");return 0;
}
【UOJ#390】【UNR#3】百鸽笼(动态规划,容斥)的更多相关文章
- 【BZOJ4559】[JLoi2016]成绩比较 动态规划+容斥+组合数学
[BZOJ4559][JLoi2016]成绩比较 Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M-1的整数.一 ...
- UOJ #390. 【UNR #3】百鸽笼
UOJ #390. [UNR #3]百鸽笼 题目链接 看这道题之前先看一道相似的题目 [PKUWC2018]猎人杀. 考虑类似的容斥: 我们不妨设处理\(1\)的概率. 我们令集合\(T\)中的所有鸽 ...
- 【BZOJ4455】小星星(动态规划,容斥)
[BZOJ4455]小星星(动态规划,容斥) 题面 BZOJ 洛谷 Uoj 题解 题意说简单点就是给定一张\(n\)个点的图和一棵\(n\)个点的树,现在要让图和树之间的点一一对应,并且如果树上存在一 ...
- 【BZOJ5287】[HNOI2018]毒瘤(动态规划,容斥)
[BZOJ5287][HNOI2018]毒瘤(动态规划,容斥) 题面 BZOJ 洛谷 题解 考场上想到的暴力做法是容斥: 因为\(m-n\le 10\),所以最多会多出来\(11\)条非树边. 如果就 ...
- 【LOJ#2542】[PKUWC2018]随机游走(min-max容斥,动态规划)
[LOJ#2542][PKUWC2018]随机游走(min-max容斥,动态规划) 题面 LOJ 题解 很明显,要求的东西可以很容易的进行\(min-max\)容斥,那么转为求集合的\(min\). ...
- 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...
- 【BZOJ2024】舞会(动态规划,容斥,高精度)
[BZOJ2024]舞会(动态规划,容斥,高精度) 题面 BZOJ 洛谷 题解 这种关系显然要先排序才不会不想影响. 设\(f[i][j]\)表示前\(i\)个女生中,选了\(j\)个女生配对,并且女 ...
- 【BZOJ2839】集合计数(容斥,动态规划)
[BZOJ2839]集合计数(容斥,动态规划) 题面 BZOJ 权限题 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使 ...
- 【BZOJ3622】已经没有什么好害怕的了(动态规划,容斥)
[BZOJ3622]已经没有什么好害怕的了(动态规划,容斥) 题面 BZOJ 题解 很明显的,这类问题是要从至少变成恰好的过程,直接容斥即可. 首先我们要求的是(糖果>药片)=(药片>糖果 ...
随机推荐
- java高并发系列 - 第9天:用户线程和守护线程
守护线程是一种特殊的线程,在后台默默地完成一些系统性的服务,比如垃圾回收线程.JIT线程都是守护线程.与之对应的是用户线程,用户线程可以理解为是系统的工作线程,它会完成这个程序需要完成的业务操作.如果 ...
- 练手WPF(一)——模拟时钟与数字时钟的制作(中)
今天接着制作数字时钟 数字时钟主要用到Path控件,主要用于定义数字笔划的形状. (1)添加一个DigitLine类 数字时钟的数字8由7笔组成,看如下定义的字段字符串数组PathDatas,每个st ...
- Core源码(五)IQueryable(转)
如果要对Iqueryable进行深入的学习,那么对于拉姆达表达式.委托需要有一定了解.这里面拉姆达表达式就是匿名函数的一种写法,而委托我们常用FUNC和ACTION,这个都是对于delegate委托的 ...
- python基础(35):协程
1. 前言 之前我们学习了线程.进程的概念,了解了在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位.按道理来说我们已经算是把cpu的利用率提高很多了.但是我们知道无论是创建多进程还是创 ...
- Linux网络——修改配置文件
Linux网络——修改配置文件 摘要:本文主要学习了如何通过修改配置文件来设置网络参数. 配置文件 通过修改系统的配置文件为系统设置网络参数,这种方式的优点是可以永久保存,计算机重启后仍然生效.缺点是 ...
- Vuex细说
vuex 1,什么是 vuex? vuex 是一个专门为 vue.js 应用程序 开发的状态管理模式+库 它充当应用程序中所有组件的集中存储(数据状态) ,其规则确保状态只能以可预测的方式进行变更 并 ...
- STM32 IAP 升级功能
IAP In Application Programming 可通过USB,CAN,UART,I2C,SPI等接口实现 IAP流程 Bootloader程序:接收升级程序,更新到flash指定地址:跳 ...
- DevOps 工程师成长日记系列四:打包
原文地址:https://medium.com/@devfire/how-to-become-a-devops-engineer-in-six-months-or-less-part-4-packag ...
- apicloud含有微信支付。支付宝支付和苹果内购的代码
apicloud含有微信支付.支付宝支付和苹果内购的代码 <!DOCTYPE html> <html> <head> <meta charset=" ...
- [MySQL] docker下安装使用mysql配置主从复制
拉取mysql的镜像docker search mysqldocker pull mysql 通过镜像创建容器,这里先创建第一个容器作为master mysql-v /etc/mysql:/etc/m ...