强连通分量-----Kosaraju
芝士:
有向图强连通分量在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。
如图中1,2,3,4是一个强连通分量。
Kosaraju算法:
如果这是一个无向图,那么从一个节点出发,深搜得到的所有节点都是连通的。
但这是一个有向图,起始节点的不同会导致结果的不同,举个栗子,从5搜可以搜到6,但是从6搜不能搜到5。
这说明需要按照一个特定的顺序深搜。假设1,2,3,4是强连通分量a,5,6分别是强连通分量b,c。a可以搜到b,c,但b,c不能搜到a,由于我们不希望搜到不属于同一个强连通分量的点,所以会先搜b,c,再搜a。
那么这个顺序就是被指向的强连通分量要在指向的强连通分量之前被搜到,即被指向的强连通分量中的至少一个点在指向的强连通分量的任意一个点之前被搜到。
为了得到这个顺序,聪明的Kosaraju想到了一个方法:新建原图G的逆图GT(其定义为GT=(V,ET),ET={(u,v):(v,u)∈E}}),按照节点编号顺序在GT上深搜,每搜到一个节点,先把这个节点所能到达的所有未被访问过的节点加入栈中,再把自己加入栈中,然后按照从栈顶到栈底的顺序深搜,这样保证了在原图G中能到达我的点,都在我之后被搜到;
最后原图中强连通分量的个数就等于深搜的次数,每一次深搜到达的未被访问过的节点属于一个强连通分量(可以用一个数组记录一下);
Tarjan算法
从一个点开始遍历图,会得到一棵有向树,当一个点有连向其祖先的边(回边)时,就会形成环,而连另一棵子树的边则不会。
每个点有一个时间戳t[i],和一个top[i]表示能反到的最高的点的时间戳,vis[i]表示这个点是否在栈中。
从一个点开始dfs,遍历子节点并把它们加入栈中,如果找到了被遍历且在栈中的点,修改自己的top为那个在栈中的点的时间戳。遍历完所有子节点后,尝试用子节点的top更新自己的top,如果自己的top等于自己的t,那么自己是所在联通块里最高的点,这是从栈中弹出元素一直到弹出自己就找到了自己所在的联通块。
如果图不连通,需要从多个点开始dfs。
模板:
/*
约翰的N (2 <= N <= 10,000)只奶牛非常兴奋,因为这是舞会之夜!她们穿上礼服和新鞋子,别上鲜花,她们要表演圆舞.
只有奶牛才能表演这种圆舞.圆舞需要一些绳索和一个圆形的水池.奶牛们围在池边站好, 顺时针顺序由1到N编号.每只奶牛都面对水池,这样她就能看到其他的每一只奶牛.
为了跳这种圆舞,她们找了 M(2<M< 50000)条绳索.若干只奶牛的蹄上握着绳索的一端, 绳索沿顺时针方绕过水池,另一端则捆在另一些奶牛身上.这样,一些奶牛就可以牵引另一些奶 牛.
有的奶牛可能握有很多绳索,也有的奶牛可能一条绳索都没有.对于一只奶牛,比如说贝茜,她的圆舞跳得是否成功,可以这样检验:沿着她牵引的绳索, 找到她牵引的奶牛,再沿着这只奶牛
牵引的绳索,又找到一只被牵引的奶牛,如此下去,若最终 能回到贝茜,则她的圆舞跳得成功,因为这一个环上的奶牛可以逆时针牵引而跳起旋转的圆舞. 如果这样的检验无法完成,那她的
圆舞是不成功的.如果两只成功跳圆舞的奶牛有绳索相连,那她们可以同属一个组合.给出每一条绳索的描述,请找出,成功跳了圆舞的奶牛有多少个组合?
输入n,m,接下来m行
*/
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define nn 10010
#define mm 100010
using namespace std;
int e=0,l=0,ee=0,cir;
int nx[mm],fi[nn],too[mm];
int fir[nn],nxt[mm],to[mm],li[nn];
bool vis[nn];
void add(int u,int v)
{
nxt[++e]=fir[u];fir[u]=e;to[e]=v;
}
void add2(int u,int v)
{
nx[++ee]=fi[u];fi[u]=e;too[e]=v;
}
void dfs(int s)
{
vis[s]=1;
for(int i=fi[s];i;i=nx[i])
{
if(!vis[too[i]])
dfs(too[i]);
}
li[++l]=s;
}
void dfs2(int s)
{
vis[s]=1;cir++;
for(int i=fir[s];i;i=nxt[i])
{
if(!vis[to[i]])
dfs2(to[i]); //写成了dfs
}
}
int main()
{
int n,m,u,v,ma=-1,sum=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v);
add2(v,u);
}
for(int i=1;i<=n;i++)
if(!vis[i])
dfs(i);
fill(vis,vis+n+1,0);
for(int i=l;i>=1;i--)
if(!vis[li[i]]) //写成了vis[i]
{
cir=0;
dfs2(li[i]);
if(cir>=2) sum++;
}
printf("%d",sum);
return 0;
}
/*洛谷3387
给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。
允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次。
*/
#include<algorithm>
#include<iostream>
#include<cstring> //
#include<cstdlib>
#include<cstdio>
#include<queue>
#define nn 10010
#define mm 100010
using namespace std;
int e=0,ee=0,time=0,la=0,var=0,head=1,tail=0;
int fir[nn],fi[nn],nxt[mm],nx[mm],to[mm],too[mm],q[nn],t[nn],top[nn],stack[nn],w[nn],d[nn],be[nn],dis[nn],in[nn];
bool vis[nn];
int read()
{
int ans=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)) {ans=ans*10+ch-'0';ch=getchar();}
return ans*f;
}
void add(int u,int v)
{
nxt[++e]=fir[u];fir[u]=e;to[e]=v;
}
void ad(int u,int v)
{
nx[++ee]=fi[u];fi[u]=ee;too[ee]=v;
}
void tarjan(int s)
{
t[s]=top[s]=++time;
stack[++la]=s;
vis[s]=1;
for(int i=fir[s];i;i=nxt[i])
if(!t[to[i]])
{
tarjan(to[i]);
top[s]=min(top[s],top[to[i]]);
}
else if(vis[to[i]])
top[s]=min(top[s],t[to[i]]); //
if(t[s]!=top[s]) //最高的点才找出这个联通分量
return;
var++;
do
{
w[var]+=d[stack[la]];
be[stack[la]]=var;
vis[stack[la]]=0;
la--;
}while(stack[la+1]!=s); //la+1
}
int dp()
{
int o,ma=-1;
while(head<=tail)
{
o=q[head++];
if(dis[o]>ma)
ma=dis[o];
for(int i=fi[o];i;i=nx[i])
{
in[too[i]]--;
if(dis[too[i]]<dis[o]+w[too[i]]) //w写成了d
dis[too[i]]=dis[o]+w[too[i]];
if(!in[too[i]])
q[++tail]=too[i];
}
}
for(int i=1;i<=var;i++)
if(w[var]>ma)
ma=w[var];
return ma;
}
int main()
{
int n,m,u,v;
n=read();m=read();
for(int i=1;i<=n;i++)
d[i]=read();
for(int i=1;i<=m;i++)
{
u=read();v=read();
add(u,v);
}
for(int i=1;i<=n;i++)
if(!t[i])
tarjan(i);
for(int i=1;i<=n;i++)
for(int j=fir[i];j;j=nxt[j])
if(be[i]!=be[to[j]])
{
ad(be[i],be[to[j]]);
in[be[to[j]]]++;
}
for(int i=1;i<=var;i++)
if(!in[i])
{
dis[i]=w[i];
q[++tail]=i;
}
printf("%d",dp());
}
/*
5 6
2 5 4 1 3
1 2
2 3
2 4
4 5
5 3
4 1
*/
强连通分量-----Kosaraju的更多相关文章
- POJ 2186 Popular Cows(强连通分量Kosaraju)
http://poj.org/problem?id=2186 题意: 一个有向图,求出点的个数(任意点可达). 思路: Kosaraju算法的第一次dfs是后序遍历,而第二次遍历时遍历它的反向图,从标 ...
- 有向图的强连通分量——kosaraju算法
一.前人种树 博客:Kosaraju算法解析: 求解图的强连通分量
- 模板 - 图论 - 强连通分量 - Kosaraju算法
这个算法是自己实现的Kosaraju算法,附带一个缩点,其实缩点这个跟Kosaraju算法没有什么关系,应该其他的强连通分量算法计算出每个点所属的强连通分量之后也可以这样缩点. 算法复杂度: Kosa ...
- 模板 - 强连通分量 - Kosaraju
Kosaraju算法 O(n+m) vector<int> s; void dfs1(int u) { vis[u] = true; for (int v : g[u]) if (!vis ...
- 图的强连通分量-Kosaraju算法
输入一个有向图,计算每个节点所在强连通分量的编号,输出强连通分量的个数 #include<iostream> #include<cstring> #include<vec ...
- 强连通分量Kosaraju
#include<cstdio> #include<algorithm> #include<iostream> #include<cstring> #i ...
- 有向图强连通分量的Tarjan算法和Kosaraju算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- 图论-求有向图的强连通分量(Kosaraju算法)
求有向图的强连通分量 Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序 ...
- POJ2186 Popular Cows 【强连通分量】+【Kosaraju】+【Tarjan】+【Garbow】
Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 23445 Accepted: 9605 Des ...
随机推荐
- python实例 字符串
比起C/C++,Python处理字符串的方式实在太让人感动了.把字符串当列表来用吧. #! /usr/bin/python word="abcdefg" a=word[2] pri ...
- sar磁盘I/O统计数据
sar是一个研究磁盘I/O的优秀工具.以下是sar磁盘I/O输出的一个示例. 第一行-d显示磁盘I/O信息,5 2选项是间隔和迭代,就像sar数据收集器那样.表3-3列出了字段和说明. 表3-3 ...
- js实现放大镜特效的实现方法
<!doctype html><html lang="en"><head> <meta charset="UTF-8" ...
- MaxCompute Spark开发指南
0. 概述 本文档面向需要使用MaxCompute Spark进行开发的用户使用.本指南主要适用于具备有Spark开发经验的开发人员. MaxCompute Spark是MaxCompute提供的兼容 ...
- reverse 的用法
直接对数组或是数据结构使用 #include<bits/stdc++.h> using namespace std; ]={,,,,,};//申请6个元素,下标从0开始,最后一个下标是5 ...
- The method getTextContent() is undefined ?
晚上下班的时候,把班上写了半截的代码带了回来.结果回到家后出乎意料的是回来的时候将代码导入eclipse后,下面这行代码就直接报错了,显示 getTextContent()未定义 . ((Elemen ...
- 加快liferay 7的启动速度
在启动Liferay的过程中,你会发现在某个时刻,会特别慢,停留了很久,它是停在validate LPKGs,检验LPKG files是否被篡改,这个过程在开发的过程中十分令人头疼. 现在Lifera ...
- 在Liferay 7中如何自定义一个Portlet的toolbar
哈哈,懒得自己写了,直接贴教程了,你想为那个portlet添加自定义的toolbar,就在javax.portlet.name=属性中写上它的值.教程博客:Adding Portlet URL in ...
- php表单传值--GET和POST
一. 传值 1. 传值/接收方法: 1) GET(5种方式!) a) 表单Form: method = ‘get’ GET接收数据方式: b) ...
- 【JZOJ4924】【NOIP2017提高组模拟12.17】向再见说再见
题目描述 数据范围 =w= 设h[i]表示,甲队得到i分的方案数. 那么h[(n+k)/2]和h[(n−k)/2]就是答案. 设g[i]表示,甲队得到至少i分的方案数. 那么h[i]=g[i]−∑j& ...