原文引自:http://blog.csdn.net/fengzhimohan/article/details/78564610

a. 案例描述

本案例假设我们需要对某个省的人口 (10万) 性别还有身高进行统计,需要计算出男女人数,男性中的最高和最低身高,以及女性中的最高和最低身高。本案例中用到的源文件有以下格式, 三列分别是 ID,性别,身高 (cm),格式如下:

b.人口数据的生成

利用Java语言随机生成一组人口数据,包括序列ID,性别M/F,身高cm,代码如下:

 import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Random; /**
* Created by Administrator on 2017/11/13.
*/
public class PeopleInfoFileGenerator {
public static void main(String[] args){
File file = new File("F:\\PeopleInfo.txt"); try {
Random random = new Random();//生成随机数
FileWriter fileWriter = new FileWriter(file);//新建一个文件
for (int i=1;i<=1000000;i++){ //生成10万个数字
int height = random.nextInt(220);
if (height < 50) {
height = height + 50;
}
String gender = getRandomGender(); //性别方法
if (height < 100 && gender == "M") {
height = height + 100;
}
if (height < 100 && gender == "F") {
height = height + 40;
}
fileWriter.write( i + " " + getRandomGender() + " " + height); //文件格式:ID 性别 身高
fileWriter.write(System.getProperty("line.separator"));
}
fileWriter.flush();
fileWriter.close();
System.out.println("People Information File generated successfully.");
}catch (IOException e){
e.printStackTrace();
}
} public static String getRandomGender(){ //构建一个随机生成性别方法
Random random = new Random();
int randomNum = random.nextInt(2) + 1;
if( randomNum % 2 == 0){
return "M";
}else{
return "F";
}
}
}

c. 实例过程分析

对于这个案例,我们要分别统计男女的信息,那么很自然的想到首先需要对于男女信息从源文件的对应的 RDD 中进行分离,这样会产生两个新的 RDD,分别包含男女信息;其次是分别对男女信息对应的 RDD 的数据进行进一步映射,使其只包含身高数据,这样我们又得到两个 RDD,分别对应男性身高和女性身高;最后需要对这两个 RDD 进行排序,进而得到最高和最低的男性或女性身高。 
第一步,先分离男女信息,使用 filter 算子过滤条件包含”M” 的行是男性,包含”F”的行是女性;第二步我们需要使用 map 算子把男女各自的身高数据从 RDD 中分离出来;第三步我们需要使用 sortBy 算子对男女身高数据进行排序。

特别注意:RDD 转化的过程中需要把身高数据转换成整数,否则 sortBy 算子会把它视为字符串,那么排序结果就会受到影响,例如 身高数据如果是:123,110,84,72,100,那么升序排序结果将会是 100,110,123,72,84,显然这是不对的。

d.求出身高统计代码实现

 import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import java.util.Arrays;
/**
* Created by Administrator on 2017/11/17.
*/
public class PeopleInfoCalculator {
public static void main(String[] args){
SparkConf sparkConf = new SparkConf().setAppName("PeopleInfoCalculator").setMaster("local[3]");
JavaSparkContext sc = new JavaSparkContext(sparkConf);
JavaRDD<String> dataFile = sc.textFile("F:\\PeopleInfo.txt"); JavaRDD<String> maleFilterData = dataFile.filter(new Function<String, Boolean>() {//过滤出性别为M的数据
@Override
public Boolean call(String s) throws Exception {
return s.contains("M");
}
});
JavaRDD<String> femaleFilterData = dataFile.filter(new Function<String, Boolean>() {//过滤出性别为F的数据
@Override
public Boolean call(String s) throws Exception {
return s.contains("F");
}
});
JavaRDD<String> maleHeightData = maleFilterData.flatMap(new FlatMapFunction<String, String>() {//得到性别为M的身高数据
@Override
public Iterable<String> call(String s) throws Exception {
return Arrays.asList(s.split(" ")[2]);
}
});
JavaRDD<String> femaleHeightData = femaleFilterData.flatMap(new FlatMapFunction<String, String>() {//得到性别为F的身高数据
@Override
public Iterable<String> call(String s) throws Exception {
return Arrays.asList(s.split(" ")[2]);
}
});
JavaRDD<Integer> maleHeightDataInt = maleHeightData.map(new Function<String, Integer>() {//将字符串格式转化为整型格式
@Override
public Integer call(String s) throws Exception {
return Integer.parseInt(String.valueOf(s));
}
});
JavaRDD<Integer> femaleHeightDataInt = femaleHeightData.map(new Function<String, Integer>() {//将字符串格式转化为整型格式
@Override
public Integer call(String s) throws Exception {
return Integer.parseInt(String.valueOf(s));
}
});
//sortBy(<T>,ascending,numPartitions) 解释:
//第一个参数是一个函数,该函数的也有一个带T泛型的参数,返回类型和RDD中元素的类型是一致的;
//第二个参数是ascending,这参数决定排序后RDD中的元素是升序还是降序,默认是true,也就是升序;
//第三个参数是numPartitions,该参数决定排序后的RDD的分区个数,默认排序后的分区个数和排序之前的个数相等,即为this.partitions.size。
JavaRDD<Integer> maleHeightLowSort = maleHeightDataInt.sortBy(new Function<Integer,Integer>(){// true表示默认排序,为升序排序,从低到高排
public Integer call(Integer s) throws Exception {
return s;
}
},true,3);
JavaRDD<Integer> femaleHeightLowSort = femaleHeightDataInt.sortBy(new Function<Integer,Integer>(){// true表示默认排序,为升序排序,从低到高排
public Integer call(Integer s) throws Exception {
return s;
}
},true,3);
JavaRDD<Integer> maleHeightHightSort = maleHeightDataInt.sortBy(new Function<Integer,Integer>(){// false表示为降序排序,从高到低
public Integer call(Integer s) throws Exception {
return s;
}
},false,3);
JavaRDD<Integer> femaleHeightHightSort = femaleHeightDataInt.sortBy(new Function<Integer,Integer>(){// true表示默认排序,为降序排序,从低到高排
public Integer call(Integer s) throws Exception {
return s;
}
},false,3);
Integer lowestMale = maleHeightLowSort.first(); //求出升序的第一个数,即最小值
Integer lowestFemale = femaleHeightLowSort.first();//求出升序的第一个数,即最小值
Integer highestMale = maleHeightHightSort.first();//求出降序的第一个数,即最大值
Integer highestFemale = femaleHeightHightSort.first();//求出降序的第一个数,即最大值 System.out.println("Number of Female Peole:" + femaleHeightData.count());//求出女性的总个数
System.out.println("Number of Male Peole:" + maleHeightData.count());//求出男性的总个数
System.out.println("Lowest Male:" + lowestMale);//求出男性最矮身高
System.out.println("Lowest Female:" + lowestFemale);//求出女性最矮身高
System.out.println("Highest Male:" + highestMale);//求出男性最高身高
System.out.println("Highest Female:" + highestFemale);//求出女性最高身高 }
}

e.运行结果:

spark 应用场景2-身高统计的更多相关文章

  1. Spark学习笔记1——第一个Spark程序:单词数统计

    Spark学习笔记1--第一个Spark程序:单词数统计 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 添加依赖 通过 Maven 添加 Spark-c ...

  2. Spark案例练习-UV的统计

    关注公众号:分享电脑学习回复"百度云盘" 可以免费获取所有学习文档的代码(不定期更新)云盘目录说明:tools目录是安装包res 目录是每一个课件对应的代码和资源等doc 目录是一 ...

  3. spark 应用场景1-求年龄平均值

    原文引自:http://blog.csdn.net/fengzhimohan/article/details/78535143 该案例中,我们将假设我们需要统计一个 10 万人口的所有人的平均年龄,当 ...

  4. spark SQL学习(案例-统计每日销售)

    需求:统计每日销售额 package wujiadong_sparkSQL import org.apache.spark.sql.types._ import org.apache.spark.sq ...

  5. spark SQL学习(案例-统计每日uv)

    需求:统计每日uv package wujiadong_sparkSQL import org.apache.spark.sql.{Row, SQLContext} import org.apache ...

  6. Spark Streaming的样本demo统计

    废话不多说,直接上代码 package com.demo; import java.util.List; import java.util.regex.Pattern; import org.apac ...

  7. Spark应用场景以及与hadoop的比较

    一.大数据的四大特征: a.海量的数据规模(volume) b.快速的数据流转和动态的数据体系(velocity) c.多样的数据类型(variety) d.巨大的数据价值(value) 二.Spar ...

  8. Spark案例练习-PV的统计

    关注公众号:分享电脑学习回复"百度云盘" 可以免费获取所有学习文档的代码(不定期更新) 云盘目录说明: tools目录是安装包res   目录是每一个课件对应的代码和资源等doc  ...

  9. Spark词频前十的统计练习

    注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6815390070254600712/ 承接上一个文档<Spark本地环境实现wordCount单词计数> ...

随机推荐

  1. 0928CSP-S模拟测试赛后总结

    依旧跌落.昨天只是偶然诈尸.我依旧是那个第二机房垫底大垃圾. 赛时打的很放松.因为T1想到了正解.对拍也打了.尽管用了大约一半的考试时间. 但是对拍拍了很久没有出错.如果你在2019年9月28日晚一下 ...

  2. XML文件定义约束

    今天在做Android项目的时候,用到了XML解析,服务端返回的不是JSON,而是XML,这时候就需要我们解析XML了,当然在解析XML的时候,需要了XML文件的定义结构,任何一个文件的定义都是要遵循 ...

  3. LUOGU P3690 【模板】Link Cut Tree (lct)

    传送门 解题思路 \(lct\)就是基于实链剖分,用\(splay\)来维护每一条实链,\(lct\)的维护对象是一棵森林.\(lct\)支持很多神奇的操作: \(1.\) \(access\):这是 ...

  4. NX二次开发-UFUN工程图表格注释section转tag函数UF_TABNOT_ask_tabular_note_of_section

    NX9+VS2012 #include <uf.h> #include <uf_tabnot.h> #include <NXOpen/Part.hxx> #incl ...

  5. TVS(瞬态抑制二极管)、Schottky(肖特基二极管)、Zener (齐纳二极管,也称稳压二极管)主要特点及区别和使用

    1. 简单介绍 TVS TVS(Transient Voltage Suppressor)二极管,又称为瞬态抑制二极管,是普遍使用的一种新型高效电路保护器件,它具有极快的响应时间(亚纳秒级)和相当高的 ...

  6. 第一章:Lambda表达式入门概念

    要点:将行为像数据一样传递. 一.几种形式 1.没有参数,用()表示 () ->System.out.println("Hello World"); 2.有且仅有一个参数,省 ...

  7. LightOJ 1245 - Harmonic Number (II)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1245 题意:仿照上面那题他想求这么个公式的数.但是递归太慢啦.让你找公式咯. ...

  8. 查看网站pv

    PV(page view),即页面浏览量,或点击量:通常是衡量一个网络新闻频道或网站甚至一条网络新闻的主要指标.简单来解释PV,那就是一个访问者在24小时(0点到24点)内到底看了你网站多少个页面.这 ...

  9. MySQL基本命令脚本

    一.基本命令 1.启动服务 说明:以管理员身份运行cmd 格式:net start 服务名称 示例:net start mysql57 2.停止服务 说明:以管理员身份运行cmd 格式:net sto ...

  10. Windows 设置内网和外网同时使用

    想要电脑同时使用内网和外网必须具备两个网卡,一个是无线网卡一个是本地连接,无线网卡用来连接wifi也就是外网,而本地连接需要网线连接内网,外网是不需要做设置的,我们只需要设置内网即可,鼠标右击电脑右下 ...