题目链接:http://www.hihocoder.com/problemset/problem/1636

题目描述

在中国古代神话中,盘古是时间第一个人并且开天辟地,它从混沌中醒来并把混沌分为天地。

刚开始地上是没有山的,只有满地的石头。

这里有 \(N\) 堆石头,标号为从 \(1\) 到 \(N\) 。盘古想要把它们合成一堆建造一座大山。如果某些堆石头的数量总和是 \(S\) ,盘古需要 \(S\) 秒才能把它们合成一堆,这新的一堆石头的数量就是 \(S\) 。

不幸的是,每一次盘古只能把连续的 \(L\) 到 \(R\) 堆石头合并成一堆。

盘古希望尽快把所有石头合成一堆。

你能帮帮他吗?如果没有解,则输出 \(0\) 。

解题思路

可以把合并所有石头的过程拆分成几个子步骤,首先合并连续的一些,然后再合并连续的一些,大区间的结果可以由小区间推出,所以就从小区间开始考虑,逐步推向大区间,可以用 dp[i][j][k] 表示区间 [i,j] 分成 k 堆得最小代价,对于固定的一个区间,肯定是取所有情况的最小值,最后答案是 dp[1][n][1] ,注意边界处理,包括刚开始的初始化。

然后就是代码处理中的一些细节了。

首先将所有的 f[i][j][k] 置为 INF

然后对于所有的初始状态(即 f[i][j][j-i+1] )都置为 \(0\) 。

因为区间 \([i,j]\) 内本身就有 \(j-i+1\) 个元素,所以这些元素本身就这么多堆,是不需要花费代价去划分的。这就是我所说的初始状态。

然后就是合并区间了,区间合并一般都是小区间开始合并到大区间,我们这里也不例外(记忆化搜索的话就得反着来了)。

对于一个区间 \([l,r]\) ,它要么是直接合并成一对,要么是若干个区间拼接到一起。所以我们这里分情况讨论:

直接合并

如果区间 \([l,r]\) 直接合并,那么合并成一对的最小代价应该是 \(f[l][r][1]\) 。

那么对于区间 \([l,r]\) ,我一定可以将其查分成两个区间 \([l,i]\) 和 \([i+1,r]\) ,其中坐区间有 \(j\) 个元素,右区间有 \(1\) 个元素,并且满足 \(L \le j+1 \le R\) 。

于是我们可以从 \(l \sim r-1\) 枚举 \(i\) ,从 \(L-1 \sim R-1\) 枚举 \(j\) ,

则 \(f[l][r][1] = \min(f[l][i][j]+f[i+1][r][1]) + sum[r] - sum[l-1]\) 。(这里 \(sum[r] - sum[l-1]\) 表示区间 \([l,r]\) 范围内的石子数量之和)

区间拼接

这里讲的区间拼接其实就是对于两个区间 \([l,j]\) 和 \([j+1,r]\) ,假设他们分别有 \(i-1\) 堆和 \(1\) 堆石子,那么这个区间总共有 \(i\) 堆石子。

区间拼接就不需要考虑合并了。

所以对于区间 \([l,r]\) 包含 \(i\) 堆石子的情况,它对应状态 \(f[l][r][i]\) ,那么它总能拆分成两个状态(\(f[l][j][i-1]\) 和 \(f[j+1][r][1]\) ,其中 \(l \le j \lt r\))的拼接。

可以推导出状态转移方程为: \(f[l][r][i] = min(f[l][j][i-1] + f[j+1][r][1])\) ,其中 \(2 \le i \le len,l \le j \lt r\) 。

实现代码如下:

#include <bits/stdc++.h>
using namespace std;
#define INF (1<<29)
const int maxn = 110;
int n, L, R, a[maxn], sum[maxn], f[maxn][maxn][maxn];
int main() {
while (~scanf("%d%d%d", &n, &L, &R)) {
for (int i = 1; i <= n; i ++) scanf("%d", a+i);
for (int i = 1; i <= n; i ++) sum[i] = sum[i-1] + a[i];
for (int i = 1; i <= n; i ++) for (int j = 1; j <= n; j ++) for (int k = 1; k <= n; k ++) f[i][j][k] = INF;
for (int l = 1; l <= n; l ++) for (int r = l; r <= n; r ++) f[l][r][r-l+1] = 0;
for (int len = 1; len <= n; len ++) {
for (int l = 1; l+len-1 <= n; l ++) {
int r = l+len-1;
for (int i = l; i < r; i ++) {
for (int j = L-1; j < R; j ++) {
f[l][r][1] = min(f[l][r][1], f[l][i][j] + f[i+1][r][1] + sum[r] - sum[l-1]);
}
}
for (int i = 2; i < len; i ++) {
for (int j = l; j < r; j ++) {
f[l][r][i] = min(f[l][r][i], f[l][j][i-1] + f[j+1][r][1]);
}
}
}
}
if (f[1][n][1] == INF) puts("0");
else printf("%d\n", f[1][n][1]);
}
return 0;
}

2017 ACM-ICPC亚洲区域赛北京站J题 Pangu and Stones 题解 区间DP的更多相关文章

  1. 【2017 ICPC亚洲区域赛北京站 J】Pangu and Stones(区间dp)

    In Chinese mythology, Pangu is the first living being and the creator of the sky and the earth. He w ...

  2. 2015 ACM / ICPC 亚洲区域赛总结(长春站&北京站)

    队名:Unlimited Code Works(无尽编码)  队员:Wu.Wang.Zhou 先说一下队伍:Wu是大三学长:Wang高中noip省一:我最渣,去年来大学开始学的a+b,参加今年区域赛之 ...

  3. 【2016 ICPC亚洲区域赛北京站 E】What a Ridiculous Election(BFS预处理)

    Description In country Light Tower, a presidential election is going on. There are two candidates,   ...

  4. Digit sum (第 44 届 ACM/ICPC 亚洲区域赛(上海)网络赛)进制预处理水题

    131072K   A digit sum S_b(n)Sb​(n) is a sum of the base-bb digits of nn. Such as S_{10}(233) = 2 + 3 ...

  5. Known Notation括号匹配类问题(2014年ACM/ICPC 亚洲区域赛牡丹江)

    题意: 给你数字或 * 的串,你可以交换一个*和数字.在最前面添1.在一个地方插入*,问你使串满足入栈出栈的(RNP)运算法则. 思路: 引用:https://blog.csdn.net/u01158 ...

  6. 2014ACM/ICPC亚洲区域赛牡丹江站汇总

    球队内线我也总水平,这所学校得到了前所未有的8地方,因为只有两个少年队.因此,我们13并且可以被分配到的地方,因为13和非常大的数目.据领队谁oj在之上a谁去让更多的冠军.我和tyh,sxk,doub ...

  7. icpc 2017北京 J题 Pangu and Stones 区间DP

    #1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...

  8. 【2017 ICPC亚洲区域赛沈阳站 K】Rabbits(思维)

    Problem Description Here N (N ≥ 3) rabbits are playing by the river. They are playing on a number li ...

  9. HDU - 6215 2017 ACM/ICPC Asia Regional Qingdao Online J - Brute Force Sorting

    Brute Force Sorting Time Limit: 1 Sec  Memory Limit: 128 MB 题目连接 http://acm.hdu.edu.cn/showproblem.p ...

随机推荐

  1. 受控组件 & 非受控组件

    在 React 中表单组件可分为两类,受控与非受控组件. 一. 受控组件 设置了 value 的 <input> 是一个受控组件. 对于受控的 <input>,渲染出来的 HT ...

  2. Android Listview中Button按钮点击事件冲突解决办法

    今天做项目时,ListView中含有了Button组件,心里一早就知道肯定会有冲突,因为以前就遇到过,并解决过,可惜当时没有记录下来. 今天在做的时候,继续被这个问题郁闷了一把,后来解决后,赶紧来记录 ...

  3. SVG和canvas画图,js求数组最大最小值

    windows命令行的内容怎么复制,右键选择标记,选中内容后再点击鼠标右键就复制了. 安装Node.js后再用npm install命令会出现如下warn:saveError ENOENT: no s ...

  4. 前后端结合的 WAF

    前言 之前介绍了一些前后端结合的中间人攻击方案.由于 Web 程序的特殊性,前端脚本的参与能大幅弥补后端的不足,从而达到传统难以实现的效果. 攻防本为一体,既然能用于攻击,类似的思路同样也可用于防御. ...

  5. java 多线程安全问题的解决方法

    三种方法: 同步代码块: synchronized(obj) { //obj表示同步监视器,是同一个同步对象 /**..... TODO SOMETHING */ }   同步方法 格式: 在方法上加 ...

  6. P1097 方程的整数解

    题目描述 给定一个整数N,求方程 \(x^3-x^2-x=N\) 的整数解. 保证解的范围在 \([-100,100]\) 范围内. 输入格式 一行一个整数 \(N(-10^6<=N<=1 ...

  7. CF241B Friends

    CF241B Friends 和Tree and Xor思路一样CF1055F Tree and XOR 直接找到第k大val,可以直接建出trie,然后按位贪心 考虑比val大的数的和 还是用b[i ...

  8. JVM系统属性 OS环境变量 JVM启动参数

    JVM系统属性(System Properties) 1.不支持通过文件查看和设置系统属性 2.可以通过JDK自带的工具jvisulavm.exe查看 3.可以在Java程序中使用API来查看系统属性 ...

  9. Spring Boot Admin-应用健康监控后台管理

    Spring Boot Admin 用于监控基于 Spring Boot 的应用,它是在 Spring Boot Actuator 的基础上提供简洁的可视化 WEB UI. 1. 什么是Spring ...

  10. git 安装及基本配置

    git 基本上来说是开发者必备工具了,在服务器里没有 git 实在不太能说得过去.何况,没有 git 的话,面向github编程 从何说起,如同一个程序员断了左膀右臂. 你对流程熟悉后,只需要一分钟便 ...