题目链接:http://www.hihocoder.com/problemset/problem/1636

题目描述

在中国古代神话中,盘古是时间第一个人并且开天辟地,它从混沌中醒来并把混沌分为天地。

刚开始地上是没有山的,只有满地的石头。

这里有 \(N\) 堆石头,标号为从 \(1\) 到 \(N\) 。盘古想要把它们合成一堆建造一座大山。如果某些堆石头的数量总和是 \(S\) ,盘古需要 \(S\) 秒才能把它们合成一堆,这新的一堆石头的数量就是 \(S\) 。

不幸的是,每一次盘古只能把连续的 \(L\) 到 \(R\) 堆石头合并成一堆。

盘古希望尽快把所有石头合成一堆。

你能帮帮他吗?如果没有解,则输出 \(0\) 。

解题思路

可以把合并所有石头的过程拆分成几个子步骤,首先合并连续的一些,然后再合并连续的一些,大区间的结果可以由小区间推出,所以就从小区间开始考虑,逐步推向大区间,可以用 dp[i][j][k] 表示区间 [i,j] 分成 k 堆得最小代价,对于固定的一个区间,肯定是取所有情况的最小值,最后答案是 dp[1][n][1] ,注意边界处理,包括刚开始的初始化。

然后就是代码处理中的一些细节了。

首先将所有的 f[i][j][k] 置为 INF

然后对于所有的初始状态(即 f[i][j][j-i+1] )都置为 \(0\) 。

因为区间 \([i,j]\) 内本身就有 \(j-i+1\) 个元素,所以这些元素本身就这么多堆,是不需要花费代价去划分的。这就是我所说的初始状态。

然后就是合并区间了,区间合并一般都是小区间开始合并到大区间,我们这里也不例外(记忆化搜索的话就得反着来了)。

对于一个区间 \([l,r]\) ,它要么是直接合并成一对,要么是若干个区间拼接到一起。所以我们这里分情况讨论:

直接合并

如果区间 \([l,r]\) 直接合并,那么合并成一对的最小代价应该是 \(f[l][r][1]\) 。

那么对于区间 \([l,r]\) ,我一定可以将其查分成两个区间 \([l,i]\) 和 \([i+1,r]\) ,其中坐区间有 \(j\) 个元素,右区间有 \(1\) 个元素,并且满足 \(L \le j+1 \le R\) 。

于是我们可以从 \(l \sim r-1\) 枚举 \(i\) ,从 \(L-1 \sim R-1\) 枚举 \(j\) ,

则 \(f[l][r][1] = \min(f[l][i][j]+f[i+1][r][1]) + sum[r] - sum[l-1]\) 。(这里 \(sum[r] - sum[l-1]\) 表示区间 \([l,r]\) 范围内的石子数量之和)

区间拼接

这里讲的区间拼接其实就是对于两个区间 \([l,j]\) 和 \([j+1,r]\) ,假设他们分别有 \(i-1\) 堆和 \(1\) 堆石子,那么这个区间总共有 \(i\) 堆石子。

区间拼接就不需要考虑合并了。

所以对于区间 \([l,r]\) 包含 \(i\) 堆石子的情况,它对应状态 \(f[l][r][i]\) ,那么它总能拆分成两个状态(\(f[l][j][i-1]\) 和 \(f[j+1][r][1]\) ,其中 \(l \le j \lt r\))的拼接。

可以推导出状态转移方程为: \(f[l][r][i] = min(f[l][j][i-1] + f[j+1][r][1])\) ,其中 \(2 \le i \le len,l \le j \lt r\) 。

实现代码如下:

#include <bits/stdc++.h>
using namespace std;
#define INF (1<<29)
const int maxn = 110;
int n, L, R, a[maxn], sum[maxn], f[maxn][maxn][maxn];
int main() {
while (~scanf("%d%d%d", &n, &L, &R)) {
for (int i = 1; i <= n; i ++) scanf("%d", a+i);
for (int i = 1; i <= n; i ++) sum[i] = sum[i-1] + a[i];
for (int i = 1; i <= n; i ++) for (int j = 1; j <= n; j ++) for (int k = 1; k <= n; k ++) f[i][j][k] = INF;
for (int l = 1; l <= n; l ++) for (int r = l; r <= n; r ++) f[l][r][r-l+1] = 0;
for (int len = 1; len <= n; len ++) {
for (int l = 1; l+len-1 <= n; l ++) {
int r = l+len-1;
for (int i = l; i < r; i ++) {
for (int j = L-1; j < R; j ++) {
f[l][r][1] = min(f[l][r][1], f[l][i][j] + f[i+1][r][1] + sum[r] - sum[l-1]);
}
}
for (int i = 2; i < len; i ++) {
for (int j = l; j < r; j ++) {
f[l][r][i] = min(f[l][r][i], f[l][j][i-1] + f[j+1][r][1]);
}
}
}
}
if (f[1][n][1] == INF) puts("0");
else printf("%d\n", f[1][n][1]);
}
return 0;
}

2017 ACM-ICPC亚洲区域赛北京站J题 Pangu and Stones 题解 区间DP的更多相关文章

  1. 【2017 ICPC亚洲区域赛北京站 J】Pangu and Stones(区间dp)

    In Chinese mythology, Pangu is the first living being and the creator of the sky and the earth. He w ...

  2. 2015 ACM / ICPC 亚洲区域赛总结(长春站&北京站)

    队名:Unlimited Code Works(无尽编码)  队员:Wu.Wang.Zhou 先说一下队伍:Wu是大三学长:Wang高中noip省一:我最渣,去年来大学开始学的a+b,参加今年区域赛之 ...

  3. 【2016 ICPC亚洲区域赛北京站 E】What a Ridiculous Election(BFS预处理)

    Description In country Light Tower, a presidential election is going on. There are two candidates,   ...

  4. Digit sum (第 44 届 ACM/ICPC 亚洲区域赛(上海)网络赛)进制预处理水题

    131072K   A digit sum S_b(n)Sb​(n) is a sum of the base-bb digits of nn. Such as S_{10}(233) = 2 + 3 ...

  5. Known Notation括号匹配类问题(2014年ACM/ICPC 亚洲区域赛牡丹江)

    题意: 给你数字或 * 的串,你可以交换一个*和数字.在最前面添1.在一个地方插入*,问你使串满足入栈出栈的(RNP)运算法则. 思路: 引用:https://blog.csdn.net/u01158 ...

  6. 2014ACM/ICPC亚洲区域赛牡丹江站汇总

    球队内线我也总水平,这所学校得到了前所未有的8地方,因为只有两个少年队.因此,我们13并且可以被分配到的地方,因为13和非常大的数目.据领队谁oj在之上a谁去让更多的冠军.我和tyh,sxk,doub ...

  7. icpc 2017北京 J题 Pangu and Stones 区间DP

    #1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...

  8. 【2017 ICPC亚洲区域赛沈阳站 K】Rabbits(思维)

    Problem Description Here N (N ≥ 3) rabbits are playing by the river. They are playing on a number li ...

  9. HDU - 6215 2017 ACM/ICPC Asia Regional Qingdao Online J - Brute Force Sorting

    Brute Force Sorting Time Limit: 1 Sec  Memory Limit: 128 MB 题目连接 http://acm.hdu.edu.cn/showproblem.p ...

随机推荐

  1. Knative Tracing 介绍

    摘要: 一个完整的业务实现想要基于 Serverless 模型来开发的话可能会分解成多个 Serverless 模块,每一个模块单独通过 Knative 的 Serving 部署,那么这些不同的 Se ...

  2. Pytorch源码与运行原理浅析--网络篇(一)

    前言 申请的专栏开通了,刚好最近闲下来了,就打算开这个坑了hhhhh 第一篇就先讲一讲pytorch的运行机制好了... 记得当时刚刚接触的时候一直搞不明白,为什么自己只是定义了几个网络,就可以完整的 ...

  3. MySQL锁的用法之行级锁

        行级锁是MySQL中粒度最小的一种锁,他能大大减少数据库操作的冲突.但是粒度越小,实现的成本也越高.MYISAM引擎只支持表级锁,而INNODB引擎能够支持行级锁,下面的内容也是针对INNOD ...

  4. 给博客添加rss订阅

    如果是自己搭建博客,有一个问题是如何写一篇新的文章就可以告诉读者,你写了一篇新的?一个简单方法是使用 rss ,RSS订阅是站点用来和其他站点之间共享内容的一种简易方式,即Really Simple ...

  5. iptables 负裁平衡(Load balancing)

    「负戴平衡」的作用是将连線平均分散给一组伺服器,以充分利用资源.最简单的作法是利用「通讯端口转接」技术,使其以循环顺序选择目的地位址. 设定iptables的组态 各家Linux系统的iptables ...

  6. 【tensorflow】】模型优化(一)指数衰减学习率

    指数衰减学习率是先使用较大的学习率来快速得到一个较优的解,然后随着迭代的继续,逐步减小学习率,使得模型在训练后期更加稳定.在训练神经网络时,需要设置学习率(learning rate)控制参数的更新速 ...

  7. H3C 专线连接模型

  8. windows 怎样关闭redis

    安装redis之后在命令行窗口中输入 redis-server redis.windows.conf 启动redis关闭命令行窗口就是关闭 redis.---redis作为windows服务启动方式r ...

  9. POJ2752 Seek the Name, Seek the Fame 题解 KMP算法

    题目链接:http://poj.org/problem?id=2752 题目大意:给你一个字符串 \(S\) ,如果它的一个前缀同时也是它的后缀,则输出这个前缀(后缀)的长度. 题目分析:next函数 ...

  10. js保存图片到手机相册

    /保存到相册 function savePic(){ var picurl= $("#picurl").attr("src"); //alert(picurl) ...