背景

Titanic: Machine Learning from Disaster - Kaggle

2 年前就被推荐照着这个比赛做一下,结果我打开这个页面便蒙了,完全不知道该如何下手。

两年后,再次打开这个页面,看到清清楚楚的Titanic Tutorial - Kaggle,完全傻瓜式的照着做就能做下来。当年是什么蒙蔽了我的眼睛~

Target

use machine learning to create a model that predicts which passengers survived the Titanic shipwreck

Data

Titanic: Machine Learning from Disaster - Kaggle

  • train.csv

    • Survived: 1=yes, 0=No
  • test.csv
  • gender_submission.csv: for prediction
    • PassengerId: those from test.csv
    • Survived: final result

Guide to help start and follow

Titanic Tutorial - Kaggle

Learning Model

摘抄的网站的解释,后面具体谈。

  • random forest model

    • constructed of several "trees"

      • that will individually consider each passenger's data
      • and vote on whether the individual survived.
      • Then, the random forest model makes a democratic decision:
        • the outcome with the most votes wins!

sklearn.ensemble.RandomForestClassifier

Titanic比赛中用到的是 RandomForestClassifier 算法,在了解这个算法前,我注意到 sklearn 中这个算法类是在 ensemble 模块中,英文不好,不知道 ensemble 是什么意思?所以想先了解一下 ensemble

ensemble

字典的解释是:a number of things considered as a group

听起来有组合的意思。

搜索了一下,在 ML 中有 ensemble learning, 翻译多是“集成学习”,参考集成学习(ensemble learning)应如何入门? - 知乎提到,有三种常见的集成学习框架:baggingboostingstacking

API Reference — scikit-learn 0.22.1 documentation中也能看出来这几种框架都有相应的算法。

Random Forestbagging 框架中的一个算法。这里就单先试着理解这个,其他框架等以后遇到了再说。但是了解这个之前,还是得先清楚 Ensemble Learning 到底是什么?

In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone.

这个解释应和了字面上的意思,组合了多种算法来获得更好的预测性能,结果优于单用其中的单个算法。

bagging 框架

sklearn.ensemble.BaggingClassifier — scikit-learn 0.22.1 documentation

A Bagging classifier is an ensemble meta-estimator that fits base classifiers each on random subsets of the original dataset and then aggregate their individual predictions (either by voting or by averaging) to form a final prediction.

大意就是:

  • 从源数据集中随机抽样一部分子集样本
  • 在这个子集样本上训练分类器
  • 重复多次上述步骤
  • 然后将各分类器的预测结果整合 (求平均或投票)
  • 形成最终的预测

问题是:

  • 抽取多少次子集样本,即要做多少分类器?
  • 随机抽取的算法用什么?
  • 整合各分类器结果的时候,求平均和投票各有什么优劣势?
  • 如何训练各个分类器?

我都不晓得~

前面提到 Random Forestbagging 框架的一种算法。现在来看看这个算法如何解答我的一些疑问。

Random Forest 算法

1.11. Ensemble methods — scikit-learn 0.22.1 documentation

The prediction of the ensemble is given as the averaged prediction of the individual classifiers.

先明确了一个,这个算法是怼各分类器求平均的。Forest of what? 自然是 forest of trees, 而这里的 tree 指的是 decision trees,所以这个算法其实是 averaging algorithms based on randomized decision trees

random forest builds multiple decision trees and merges them together to get a more accurate and stable prediction.

Random forest对每个分类器都建一个决策树,然后再合并。

分类器是如何划分的呢?还是以 Titanic 的代码为例来试着理解下:

from sklearn.ensemble import RandomForestClassifier

y = train_data["Survived"]

features = ["Pclass", "Sex", "SibSp", "Parch"]
X = pd.get_dummies(train_data[features])
model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1)
model.fit(X, y)
  • y:是训练集中灾难中存活的人的集合
  • features: 是这些人的特征值,如性别,几等舱等
  • X :生成 dummy 数据,为什么要用 get_dummies而不是直接用train_data[features]呢?

尝试直接用 train_data[features], 打印 X 的结果是这样的:

     Pclass     Sex  SibSp  Parch
0 3 male 1 0
1 1 female 1 0

如果再继续用这个 X 建模的话,会报错:

ValueError: could not convert string to float: 'male'

显然,因为 Sex 字段是 string 类型,而模型需要的是 float 类型,所以不能直接用 train_data[features]

get_dummies() 的作用也清楚了,就是将这些 string 类型的字段转化成 float 类型。从下面的打印结果也可以看出,Sex 字段被分成了两个字段,Sex_male, Sex_female, 其值分别是 0 和 1.

Pclass  SibSp  Parch  Sex_female  Sex_male
0 3 1 0 0 1
1 1 1 0 1 0
2 3 0 0 1 0
3 1 1 0 1 0
4 3 0 0 0 1
.. ... ... ... ... ...
886 2 0 0 0 1
887 1 0 0 1 0
888 3 1 2 1 0
889 1 0 0 0 1
890 3 0 0 0 1
  • RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1)

    • 这几个参数分别是什么意思?

      • n_estimators : 决策树的数量
      • max_depths:决策树的最大深度
      • random_state: 控制随机数生成器的,(实际没太明白,这个随机是不是指随机抽样?),可能要和其他参数配合用比如 shuffle。另外还提到,这个数用了控制随机算法,使得运行多次每次都还是产生相同结果?
        • To make a randomized algorithm deterministic (i.e. running it multiple times will produce the same result), an arbitrary integer random_state can be used

具体如何调参,参考 parameter tuning guidelines

Random Forest的应用场景

既然是分类器算法,自然很多分类应用的场景都适合了;另外还有回归问题的场景。

这篇文章The Random Forest Algorithm: A Complete Guide - Built In给出了一个实际例子的类比:

  • 你在决定去哪儿旅行,去询问你的朋友
  • 朋友问,你以前的旅行中喜欢和不喜欢的方面都哪些
    • 在这个基础上给出了一些建议
  • 这为你的决策提供了素材
  • 同样的步骤,你又去询问另一个朋友
  • 以及另另一个朋友
  • ...

同样,你拿到了几个 offer,犹豫该接哪个等等;看中了几套房子,决定选哪个,貌似都可以套用这个算法一试了。

学到的几个之前不熟悉的代码

test_data = pd.read_csv("/kaggle/input/titanic/test.csv")
test_data.head()
men = train_data.loc[train_data.Sex == 'male']["Survived"]
rate_men = sum(men)/len(men)

Reference

本文由博客一文多发平台 OpenWrite 发布!

我的第一个 Kaggle 比赛学习 - Titanic的更多相关文章

  1. Kaggle比赛(一)Titanic: Machine Learning from Disaster

    泰坦尼克号幸存预测是本小白接触的第一个Kaggle入门比赛,主要参考了以下两篇教程: https://www.cnblogs.com/star-zhao/p/9801196.html https:// ...

  2. Kaggle比赛:从何着手?

    介绍 参加Kaggle比赛,我必须有哪些技能呢? 你有没有面对过这样的问题?最少在我大二的时候,我有过.过去我仅仅想象Kaggle比赛的困难度,我就感觉害怕.这种恐惧跟我怕水的感觉相似.怕水,让我无法 ...

  3. Kaggle比赛冠军经验分享:如何用 RNN 预测维基百科网络流量

    Kaggle比赛冠军经验分享:如何用 RNN 预测维基百科网络流量 from:https://www.leiphone.com/news/201712/zbX22Ye5wD6CiwCJ.html 导语 ...

  4. Kaggle比赛总结

    做完 Kaggle 比赛已经快五个月了,今天来总结一下,为秋招做个准备. 题目要求:根据主办方提供的超过 4 天约 2 亿次的点击数据,建立预测模型预测用户是否会在点击移动应用广告后下载应用程序. 数 ...

  5. kaggle比赛流程(转)

    一.比赛概述 不同比赛有不同的任务,分类.回归.推荐.排序等.比赛开始后训练集和测试集就会开放下载. 比赛通常持续 2 ~ 3 个月,每个队伍每天可以提交的次数有限,通常为 5 次. 比赛结束前一周是 ...

  6. 从最近的比赛学习CTR/CVR

    https://zhuanlan.zhihu.com/p/35046241 包大人 深度学习炼丹劝退师 278 人赞同了该文章 从最近的比赛学习CTR/CVR 最近在玩kaggle的talking d ...

  7. 推荐一个算法编程学习中文社区-51NOD【算法分级,支持多语言,可在线编译】

    最近偶尔发现一个算法编程学习的论坛,刚开始有点好奇,也只是注册了一下.最近有时间好好研究了一下,的确非常赞,所以推荐给大家.功能和介绍看下面介绍吧.首页的标题很给劲,很纯粹的Coding社区....虽 ...

  8. FPGA一个博客学习

    FPGA一个博客学习 http://bbs.ednchina.com/BLOG_PERSONALCAT_100185_2001619.HTM

  9. 推荐一个可视化的学习Git的好网站:LearnGitBranching

    博客搬到了fresky.github.io - Dawei XU,请各位看官挪步.最新的一篇是:推荐一个可视化的学习Git的好网站:LearnGitBranching.

随机推荐

  1. 一次接口压力测试qps极低原因分析及解决过程

    一次接口压力测试qps极低原因分析及解决过程 9-2日在做内部的性能测试相关培训时,发现注册接口压力测试qps极低(20左右),这个性能指标远不能达到上线标准 ,经过一系列调试,最后定位 98%的时间 ...

  2. Python的驻留机制(仅对数字,字母,下划线有效)

    Python的驻留机制及为在同一运行空间内,当两变量的值相同,则地址也相同. 举例: a = 'abc' b = 'abc' print(id(a)) print(id(b)) 以上示例为驻留机制有效 ...

  3. vue-learning:4-template-v-if-and-v-show

    控制元素可见性的指令 v-if 和 v-show v-if v-else v-else-if :多重判断 template :分组渲染包裹元素 key:管理可复用元素 v-show v-if与v-sh ...

  4. dotnet core 黑科技·String

    本文来告诉大家 dotnet core 里面使用的黑科技,如何提高String.IndexOf(char)的性能 在Performance Improvements in .NET Core有说道哪些 ...

  5. 原生js 通用事件绑定

    /*原文地址:http://ejohn.org/blog/flexible-javascript-events/*/ http://blog.csdn.net/qi1271199790/article ...

  6. git无密码push

    近来项目中调研,jupyterlab和git的整合内容,git server我使用的gitbucket和bitbucket.(项目要求使用bitbucket,看错一个字母下载了两个镜像) gitbuc ...

  7. AbstactFactory模式

    AbstractFactory模式就是用来解决这类问题的:要创建一组相关或者相互依赖的对象. AbstractFactory模式关键就是将这一组对象的创建封装到一个用于创建对象的类(ConcreteF ...

  8. STM32 命名方法

    1.STM32型号的说明:以STM32F103RBT6这个型号的芯片为例,该型号的组成为7个部分,其命名规则如下: STM32  ST公司生产的Cortex-M内核的32位微控制器 F F代表产品类型 ...

  9. python监控模块

    pip install psutil 获取内存信息: >>> import psutil >>> mem = psutil.virtual_memory() #获取 ...

  10. Nmap基本使用

    Nmap ​ Network Mapper ​ 一款开源免费的网络发现和安全审计工具. 用途 ​ 列举网络主机清单 ​ 监控主机或服务运行状况 ​ 管理服务升级调度 ​ 检测目标主机是否在线 ​ 检测 ...