P5048 [[Ynoi2019模拟赛]Yuno loves sqrt technology III]
为什么我感觉这题难度虚高啊……
区间众数的出现次数…
计算器算一下 \(\sqrt 500000 = 708\)
然后我们发现这题的突破口?
考虑分块出来[L,R]块的众数出现个数 用 \(\texttt{mx[L][R]}\) 维护就可以了
每次考虑一个L… 然后R指针一直向右移不断的更新到N 这样子做的复杂度因为最多有 \(\sqrt n\) 个块 所以复杂度大概是 \(n\sqrt n\) 实际上还少一点…
然后整块的想好了……单独的怎么处理?
分类讨论
1 \(\texttt{L}\)和\(\texttt{R}\) 所在的块相同 那么分块的常规暴力操作(记得清空…)复杂度保证是 \(\sqrt n\)的
2 不在一个块的话 考虑用一种其他方法…记录一个\(\texttt{v[i]}\)存的是每个 数值 i 的出现位置 再记录一个 \(\texttt{pos[i]}\) 表示 i 这个数值在序列里是第几次出现…(主要还是方便vector的操作…)
您已经统计出来了 \(\texttt{L-R}\) 的最多次数 肯定是保底 \(\texttt{mx[L][R]}\) 了 根据这个基础 这样指针移动就相对来说保证了复杂度…每次也是\(\sqrt n\)的
讲下具体操作 记录了这个 \(pos_i\) 是 i 在 \(a_i\) 第几个出现 然后 \(v_{a_i}\)是记录了每个 \(a_i\)的出现位置 于是就可以 在左半区间的时候判断是否\(\leq \texttt{R}\) 在右半区间的时候判断是否\(\ge\texttt{L}\) 如果满足条件就加大 当前的\(\texttt{ans}\) 直到不满足 肯定是最优的…
#include<bits/stdc++.h>
using namespace std ;
const int N = 5e5 + 10 ;
int n , m , a[N] , b[N] , bl[N] , unt = 0 , L[710] , R[710] , mx[710][710] , tot[N] , pos[N] ;
vector < int > v[N] ;
inline int query(int l , int r) { int ans = 0 ;
if(bl[l] == bl[r]) {
for(register int i = l ; i <= r ; i ++) tot[a[i]] = 0 ;
for(register int i = l ; i <= r ; i ++) ans = max(ans , ++ tot[a[i]]) ;
return ans ;
} ans = mx[bl[l] + 1][bl[r] - 1] ;
for(register int i = l ; i <= R[bl[l]] ; i ++) {
int it = pos[i] ; while(it + ans < v[a[i]].size() && v[a[i]][it + ans] <= r) ++ ans ;
}
for(register int i = L[bl[r]] ; i <= r ; i ++) {
int it = pos[i] ; while(it - ans >= 0 && v[a[i]][it - ans] >= l) ++ ans ;
} return ans ;
}
signed main() {
// freopen("0.in" , "r" , stdin) ;
ios :: sync_with_stdio(false) ;
cin.tie(0) ;cout.tie(0) ;
cin >> n >> m ;
for(register int i = 1 ; i <= n ; i ++) { cin >> a[i] ; b[i] = a[i] ; }
sort(b + 1 , b + n + 1) ;
int len = unique(b + 1 , b + n + 1) - b - 1 ;
for(register int i = 1 ; i <= n ; i ++) { a[i] = lower_bound(b + 1 , b + len + 1 , a[i]) - b ; }
for(register int i = 1 ; i <= n ; i ++) { v[a[i]].push_back(i) ; pos[i] = v[a[i]].size() ; pos[i] -- ; }
int unt = sqrt(n) ;
for(register int i = 1 ; i <= n ; i ++) bl[i] = (i - 1) / unt + 1 ;
for(register int i = 1 ; i <= bl[n] ; i ++) { L[i] = (i - 1) * unt + 1 ; R[i] = i * unt ; }
R[bl[n]] = n ;
for(register int i = 1 ; i <= bl[n] ; i ++) {
memset(tot , 0 , sizeof(tot)) ;
for(register int j = i ; j <= bl[n] ; j ++){
mx[i][j] = mx[i][j - 1] ;
for(register int k = L[j] ; k <= R[j] ; k ++) mx[i][j] = max(mx[i][j] , ++ tot[a[k]]) ;
}
}
int lastans = 0 ;
for(register int i = 1 ; i <= m ; i ++) {
int l , r ; cin >> l >> r ;
l ^= lastans ; r ^= lastans ;
if(l > r) swap(l , r) ;
cout << (lastans = query(l , r)) << '\n' ;
}
return 0 ;
}
P5048 [[Ynoi2019模拟赛]Yuno loves sqrt technology III]的更多相关文章
- [洛谷P5048][Ynoi2019模拟赛]Yuno loves sqrt technology III
题目大意:有$n(n\leqslant5\times10^5)$个数,$m(m\leqslant5\times10^5)$个询问,每个询问问区间$[l,r]$中众数的出现次数 题解:分块,设块大小为$ ...
- 洛谷P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III(分块)
传送门 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 用蒲公英那个分块的方法做结果两天没卡过去→_→ 首先我们分块,预处理块与块之间的答案,然后每次询问的时候拆成整块和两边剩下的元素 整块的答案很简 ...
- Luogu P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III 分块
这才是真正的$N\sqrt{N}$吧$qwq$ 记录每个数$vl$出现的位置$s[vl]$,和每个数$a[i]=vl$是第几个$vl$,记为$P[i]$,然后预处理出块$[i,j]$区间的答案$f[i ...
- 洛谷 P5048 - [Ynoi2019 模拟赛] Yuno loves sqrt technology III(分块)
题面传送门 qwq 感觉跟很多年前做过的一道题思路差不多罢,结果我竟然没想起那道题?!!所以说我 wtcl/wq 首先将 \(a_i\) 离散化. 如果允许离线那显然一遍莫队就能解决,复杂度 \(n\ ...
- [Luogu5048] [Ynoi2019模拟赛]Yuno loves sqrt technology III[分块]
题意 长为 \(n\) 的序列,询问区间众数,强制在线. \(n\leq 5\times 10^5\). 分析 考虑分块,暴力统计出整块到整块之间的众数次数. 然后答案还可能出现在两边的两个独立的块中 ...
- [luogu5048] [Ynoi2019模拟赛] Yuno loves sqrt technology III
题目链接 洛谷. Solution 思路同[BZOJ2724] [Violet 6]蒲公英,只不过由于lxl过于毒瘤,我们有一些更巧妙的操作. 首先还是预处理\(f[l][r]\)表示\(l\sim ...
- [Ynoi2019模拟赛]Yuno loves sqrt technology III
题目大意: 给你一个长为n的序列a,m次询问,每次查询一个区间的众数的出现次数,强制在线. 解题思路: 出题人题解 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 首先得离散化. 分块后,预处理Fi, ...
- [Ynoi2019模拟赛]Yuno loves sqrt technology II(二次离线莫队)
二次离线莫队. 终于懂了 \(lxl\) 大爷发明的二次离线莫队,\(\%\%\%lxl\) 二次离线莫队,顾名思义就是将莫队离线两次.那怎么离线两次呢? 每当我们将 \([l,r]\) 移动右端点到 ...
- [Ynoi2019模拟赛]Yuno loves sqrt technology II
题目大意: 给定一个长为\(n\)的序列,\(m\)次询问,每次查询一个区间的逆序对数. 32MB. 解题思路: 出题人题解 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 二次离线莫队. 对于每个区 ...
随机推荐
- Error serializing object:序列化对象时出错
序列化对象时出错 :Error serializing object. Error serializing object. Cause: java.io.NotSerializableExceptio ...
- 学习jQuery基础语法,并通过一个案例引出jQuery的核心
jquery是一个快速.小巧,功能强大的javascript函数库. jquery主要用来替代原生的javascript,简化代码. 前端最头疼的就是兼容:IE6/7/8兼容的最高版本是jQuery1 ...
- JavaScript 基础学习(二)js 和 html 的结合方式
第一种 使用一个标签 <script type="text/javascript"> js代码; </script> 第二种 使用 script 标签,引入 ...
- springboot无法访问静态资源
无法访问static下的静态资源 1.在application.yml中添加 resources: static-locations: classpath:/META-INF/resources/,c ...
- Linux学习Day3:新手必须掌握的Linux命令(二)
今天学习的命令都是运维工作中经常要用到的,非常实用,必须要用心学习,争取把这些命令烂熟于心,具体内容如下: 一.系统状态监测命令 1.ifconfig命令 用于获取网卡配置与网络状态等信息. [roo ...
- Linux下VIM编译器的使用以及shell编程基础
VIM编译器的安装与使用 vim编辑器安装 在CentOS中,执行:yum -y install vim 普通模式 h: 左移一个字符 j: 下移一行 k: 上移一行 l: 右移一个字符 PageDo ...
- Zabbix3.4使用详解
zabbix-基础 第1章 关于zabbix 1.1 为什么要使用监控 1.对系统不间断实时监控2.实时反馈系统当前状态3.保证服务可靠性安全性4.保证业务持续稳定运行 1.2 如何进行监控 比如我们 ...
- 搜索练习题LETTERS
题目链接:http://ybt.ssoier.cn:8088/problem_show.php?pid=1212 或者http://poj.org/problem?id=1154 题目描述: 给 ...
- SQL内容补充
一.where和having 1.where 后不能跟聚合函数,因为where执行顺序大于聚合函数. 2. where 子句的作用是在对查询结果进行分组前,将不符合where条件的行去掉,即在分组之前 ...
- 1级搭建类104-Oracle 12cR2 单实例 FS(阿里云)公开
项目文档引子系列是根据项目原型,制作的测试实验文档,目的是为了提升项目过程中的实际动手能力,打造精品文档AskScuti. 项目文档引子系列目前不对外发布,仅作为博客记录.如学员在实际工作过程中需提前 ...