Principal component analysis(PCA)

中文就是主成成分分析。在学数学建模的时候将这分为了评价类的方法(我实在是很难看出来,在机器学习中是属于无监督学习降维方法的一种线性降维方法。

举一个最简单的栗子(下图,二维的数据降到一维,就得找到一条直线将所有的点都投影到该直线上,这条直线需要满足的条件就是投影在这条直线上的所有点的方差最大,减少信息的损失。



PCA主要用于当数据的维度过高或者不同维度的数据之间存在相关的关系,造成了机器学习性能的下降的问题。这个时候PCA就是要将高维特征转化为独立性较高的低维特征,降低特征之间的相关性。

Math of warning!

\(X_{nxm}\):n维特征的数据,\(Z_{kxm}\):k维特征的数据,PCA技术就是要找到一组\(W_{kxn}\)使得\(Z=W\cdot X\),同时\(Maximize(\sum_i^kVar(Z_i))\),\(Z_i\)表示第i-D下的投影。

  • 第一步 将X降到\(Z_1,Z_2\)上

    \(Z_1=W_1\cdot X\)

    \(Var(Z_1)=\frac{1}{m}\sum_{j=1}^m(Z_{1j}-\overline{Z_1})^2\),\(|W_1|=1\)投影但是不影响大小

    \(Z_2=W_2\cdot X\)

    \(Var(Z_2)=\frac{1}{m}\sum_{j=1}^m(Z_{2j}-\overline{Z_2})^2\),\(|W_2|=1\)投影但是不影响大小,但是为了是方差最大或者说使特征之间的相关性最低,\(W_1\cdot W_2=0\)

    PS:如果不加这个条件的话\(W_1==W_2\)

  • 第二步 求解\(Var(Z_1),Var(Z_2)\)



    PS:注意这里加\(\cdot\)是向量积,不加的是矩阵乘法(坑

  • \(Z_{1j}=W_1\cdot X_j,\overline{Z_1}=\frac{1}{m}\sum_{j=1}^mZ_{1j}=\frac{1}{m}\sum_{j=1}^mW_1\cdot X_j=W_1\cdot \overline{X_j}\)

  • \(Var(Z_1)=\frac{1}{m}\sum_{j=1}^m(W_1\cdot X_j-W_1\cdot \overline{X_j})^2=\frac{1}{m}\sum_{j=1}^m[W_1\cdot (X_j-\overline{X_j})]^2=W_1^T[\frac{1}{m}\sum_{j=1}^m(X_j-\overline{X_j})(X_j-\overline{X_j})^T]W_1=W_1^TCov(X)W_1=W_1^TSW_1,S=Cov(X)\)

  • 接下来是最大化\(Var(Z_1)\),存在Constraint:\(|W_1|=1,W_1.TW_1-1=0\),利用拉格朗日算子法

    \(g(W_1)=W_1^TSW_1-\alpha(W_1.TW_1-1)\)

    \(\forall i<=m, \frac{\partial g(W_1)}{\partial W_{1i}}=0\rightarrow SW_1-\alpha W_1=0\) 可知\(W_1\)是S的特征向量,\(\alpha\)是S的特征值

    \(Var(Z_1)=W_1^TSW_1=W_1^T\alpha W_1=\alpha W_1^TW_1=\alpha\),要是方差最大则\(\alpha\)是S的最大特征值,\(W_1\)为所对应的特征向量。

  • 按照相同的思路来最大化\(Var(Z_2)\),存在constraints:\(W_2^TW_2-1=0,W_1^TW_2=0\)

    \(g(W_2)=W_2^TSW_2-\alpha(W_2^TW_2-1)-\beta(W_2^TW_1)\)

    \(\forall i<=m, \frac{\partial g(W_2)}{\partial W_{2i}}=0\)

    \(\rightarrow SW_2-\alpha W_2-\beta W_1=0 \rightarrow W_1^TSW_2-\alpha W_1^TW_2-\beta W_1^TW_1=0\)

    \(\rightarrow \beta=W_1^TSW_2=(W_1^TSW_2)^T=W_2^TSW_1=W_2^T\lambda W_1=\lambda W_2^TW_1=0\)

    因为\(\beta=0\)所以\(SW_2=\alpha W_2\),同理可知\(W_1\)是S的特征向量,\(\alpha\)是S的特征值

    \(Var(Z_2)=W_2^TSW_2=\alpha\),要想方差最大且满足约束条件(隐含条件S是Symmetric的,特征向量是正交的),则\(\alpha\)是第二大的特征值且\(W_2\)是对应的特征向量。

  • 第三步 得出结论

    降至不同空间维度上保存的信息量的大小是降维所用S的特征向量所对应的特征值的大小决定的

Conclusions

1、因为S一定是实对称矩阵,则经过对S的奇异值分解以后\(S=Q\sum Q^T\),\(\sum\)是一个对角线为S的特征值的矩阵,Q是特征值对应的特征列向量矩阵,从Q中抽取特征值最大的对应的特征列向量就可以进行降维,并且通过特征值算出简单的信息损失情况。

import numpy as np
U,S,V=np.linalg.svd(S)

人生此处,绝对乐观

PCA技术的自我理解(催眠的更多相关文章

  1. 降维PCA技术

    降维技术使得数据变得更易使用,并且它们往往能够去除数据中的噪声,使得机器学习任务往往更加精确. 降维往往作为预处理步骤,在数据应用到其它算法之前清洗数据.有很多技术可以用于数据降维,在这些技术中,独立 ...

  2. Thread线程join方法自我理解

    Thread线程join方法自我理解 thread.join():等待thread线程运行终止,指的是main-thread(main线程)必须等待thread线程运行结束,才能继续thread.jo ...

  3. 《Python爬虫技术:深入理解原理、技术与开发》已经出版,送Python基础视频课程

    好消息,<Python爬虫技术:深入理解原理.技术与开发>已经出版!!!   JetBrains官方推荐图书!JetBrains官大中华区市场部经理赵磊作序!送Python基础视频课程!J ...

  4. gslb(global server load balance)技术的一点理解

    gslb(global server load balance)技术的一点理解 前言 对于比较大的互联网公司来说,用户可能遍及海内外,此时,为了提升用户体验,公司一般会在离用户较近的地方建立机房,来服 ...

  5. SPP空间金字塔池化技术的直观理解

    空间金字塔池化技术, 厉害之处,在于使得我们构建的网络,可以输入任意大小的图片,不需要经过裁剪缩放等操作. 是后续许多金字塔技术(psp,aspp等)的起源,主要的目的都是为了获取场景语境信息,获取上 ...

  6. 【转】浅谈对主成分分析(PCA)算法的理解

    以前对PCA算法有过一段时间的研究,但没整理成文章,最近项目又打算用到PCA算法,故趁热打铁整理下PCA算法的知识.本文观点旨在抛砖引玉,不是权威,更不能尽信,只是本人的一点体会. 主成分分析(PCA ...

  7. 关于PCA主成分分析的一点理解

    PCA 即主成分分析技术,旨在利用降维的思想,把多指标转化为少数几个综合指标. 假设目前我们的数据特征为3,即数据维度为三,现在我们想将数据降维为二维,一维: 我们之前的数据其实就是三维空间中的一个个 ...

  8. 关于C#的委托(delegate)的自我理解

    首先描述一个事情,一个老师饿了,他要去买东西填饱肚子,然后他发现他的学生“小李”在玩,没学习,于是就委托“小李”去帮他买吃的. 根据这件事我们来分析: 首先得有个老师(老师饿了是他的方法,老师买东西也 ...

  9. android 的生命周期自我理解

    android的active的生命周期,经过网站的blog学习,加上自己的理解总结如下: 第1种:全新的启动应用程序顺序 onCreate--->onStart---->onResume ...

随机推荐

  1. 聊聊Python中的描述符

    描述符是实现描述符协议方法的Python对象,当将其作为其他对象的属性进行访问时,该描述符使您能够创建具有特殊行为的对象. 通常,描述符是具有“绑定行为”的对象属性,其属性访问已被描述符协议中的方法所 ...

  2. 你好,babel

    写在前面 其实学babel是本人2019年Q3的一个计划,因为当时自己做的一个项目需要自己去配babel,也遇到了一些困难,发现自己对babel的了解还是很少的,所以决定好好看下babel:可是后来解 ...

  3. 「CodeForces 546B」Soldier and Badges 解题报告

    CF546B Soldier and Badges 题意翻译 给 n 个数,每次操作可以将一个数 +1,要使这 n 个数都不相同, 求最少要加多少? \(1 \le n \le 3000\) 感谢@凉 ...

  4. 浅谈 OpenGL 中相关阻塞问题

    昨天我遇到一个问题,问题如下: 我使用了延迟渲染,我的渲染流程是:Pass1 --> CUDA并行计算 -->Pass2 CUDA并行计算中需要使用Pass1渲染生成的两张纹理,然而我在G ...

  5. 1058 选择题 (20 分)C语言

    批改多选题是比较麻烦的事情,本题就请你写个程序帮助老师批改多选题,并且指出哪道题错的人最多. 输入格式: 输入在第一行给出两个正整数 N(≤ 1000)和 M(≤ 100),分别是学生人数和多选题的个 ...

  6. kubernetes-dashboard部署

    参考资料: kubernetes官方文档 官方GitHub 创建访问用户 解决chrome无法访问dashboard 官方部署方法如下: kubectl apply -f https://raw.gi ...

  7. 高斯消去法解线性方程组(MPI)

    用一上午的时间,用MPI编写了高斯消去法解线性方程组.这次只是针对单线程负责一个线程方程的求解,对于超大规模的方程组,需要按行分块,后面会在这个基础上进行修改.总结一下这次遇到的问题: (1)MPI_ ...

  8. Kubernetes 会不会“杀死” DevOps?

    作者丨孙健波(天元)  阿里巴巴技术专家 导读:DevOps 这个概念最早是在 2007 年提出的,那时云计算基础设施的概念也才刚刚提出没多久,而随着互联网的逐渐普及,应用软件的需求爆发式增长,软件开 ...

  9. JavaScript-EventLoop-事件循环

    2020-01-11 EventLoop-事件循环 一.学习事件循环之前,先学习几个英语词组 EventLoop 事件循环 Event Queue 事件队列 Event Table 事件表macro- ...

  10. Jquery实现图片管理

    这里实现的是一个图片的在线管理,类似于网络相册的图片管理. 效果图如下: 文件结构如下图: style2.css文件内容如下: @charset "utf-8"; *{;; } i ...