一、理想与现实

Apache Flink 是一个分布式流批一体化的开源平台。Flink 的核心是一个提供数据分发、通信以及自动容错的流计算引擎。Flink 在流计算之上构建批处理,并且原生的支持迭代计算,内存管理以及程序优化。

实时计算(Alibaba Cloud Realtime Compute,Powered by Ververica)是阿里云提供的基于 Apache Flink 构建的企业级大数据计算平台。在 PB 级别的数据集上可以支持亚秒级别的处理延时,赋能用户标准实时数据处理流程和行业解决方案;支持 Datastream API 作业开发,提供了批流统一的 Flink SQL,简化 BI 场景下的开发;可与用户已使用的大数据组件无缝对接,更多增值特性助力企业实时化转型。

Apache Flink 社区迎来了激动人心的两位数位版本号,Flink 1.10.0 正式宣告发布!作为 Flink 社区迄今为止规模最大的一次版本升级,Flink 1.10 容纳了超过 200 位贡献者对超过 1200 个 issue 的开发实现,包含对 Flink 作业的整体性能及稳定性的显著优化、对原生 Kubernetes 的初步集成以及对 Python 支持(PyFlink)的重大优化。

Flink 1.10 同时还标志着对 Blink的整合宣告完成,随着对 Hive 的生产级别集成及对 TPC-DS 的全面覆盖,Flink 在增强流式 SQL 处理能力的同时也具备了成熟的批处理能力。

在过去的2019年,大数据领域的Flink异常火爆,从年初阿里巴巴高调收购Flink的母公司,到秋天发布的1.9以及最近的1.10版本完成整合阿里Blink分支,各类分享文章和一系列国内外公司应用案例,都让人觉得Flink是未来大数据领域统一计算框架的趋势。尤其是看过阿里云上的实时计算平台,支持完善的SQL开发和批流都能处理的模式让人印(直)象(流)深(口)刻(水)。但是相对于公有云产品,稍微有点规模的公司都更愿意使用开源产品搭建自己的平台,可是仔细研究Flink的官方文档和源码,准备撸起袖子开干时,才发现理想和现实的差距很大……

首先是阿里实时计算平台产品的SQL开发界面:

然而现实中Flink所支持的SQL开发API是这样的:

// create a TableEnvironment for specific planner batch or streaming
TableEnvironment tableEnv = ...; // see "Create a TableEnvironment" section // register a Table
tableEnv.registerTable("table1", ...) // or
tableEnv.registerTableSource("table2", ...); // or
tableEnv.registerExternalCatalog("extCat", ...);
// register an output Table
tableEnv.registerTableSink("outputTable", ...); // create a Table from a Table API query
Table tapiResult = tableEnv.scan("table1").select(...);
// create a Table from a SQL query
Table sqlResult = tableEnv.sqlQuery("SELECT ... FROM table2 ... "); // emit a Table API result Table to a TableSink, same for SQL result
tapiResult.insertInto("outputTable"); // execute
tableEnv.execute("jobName");

最后翻遍Flink文档发现提供了一个实验性质的命令行SQL客户端:

此外当我们用开源Flink代码部署一套集群后,整个集群有 JobManager 和 TaskManager 两种角色,其中 JobManager 提供了一个简单的管理界面,提供了上传Jar包执行任务的功能,以及一些简单监控界面,此外还提供一系列管理和监控的 Rest Api,可惜都没有和SQL层面直接相关的东西。

之所以有这一系列理想与现实的差异,是因为Flink更多的定位在计算引擎,在开发界面等方面暂时投入较少,但是每写一个SQL然后嵌入到代码中编译成JAR包上传到Flink集群执行是客(小)户(白)所不能接受的,这也就需要我们自己开发一套以SQL作业为中心的管理平台(对用户暴露的web系统),由该平台管理 Flink 集群,共同构成 Flink SQL 计算平台。

二、平台功能梳理

一个完整的SQL平台在产品流程上至少(第一版)需要有以下部分。

  • SQL作业管理:新增、调试、提交、下线SQL任务

  • 数据源和维表管理:用DDL创建数据源表,其中维表也是一种特殊数据源

  • 数据汇管理:用DDL创建数据结果表,即 insert into 结果表 select xxx

  • UDF管理:上传UDF的jar包

  • 调度和运维:任务定时上下线、任务缩容扩容、savepoint管理

  • 监控:日志查看、指标采集和记录、报警管理

  • 其他:角色和权限管理、文档帮助等等……

除了作为Web系统需要的一系列增删改查和交互展示功能外,大部分Flink集群管理功能可以通过操作Flink集群提供的Rest接口实现,但是其中没有SQL相关内容,也就是前面四项功能(提交SQL、DDL、UDF,后文统称提交作业部分)都需要自己实现和 Flink 的交互代码,因此如何更好地提交作业就成了构建该平台的第一个挑战。

从零构建Flink SQL计算平台 - 1平台搭建的更多相关文章

  1. OPPO数据中台之基石:基于Flink SQL构建实数据仓库

    小结: 1. OPPO数据中台之基石:基于Flink SQL构建实数据仓库 https://mp.weixin.qq.com/s/JsoMgIW6bKEFDGvq_KI6hg 作者 | 张俊编辑 | ...

  2. Demo:基于 Flink SQL 构建流式应用

    Flink 1.10.0 于近期刚发布,释放了许多令人激动的新特性.尤其是 Flink SQL 模块,发展速度非常快,因此本文特意从实践的角度出发,带领大家一起探索使用 Flink SQL 如何快速构 ...

  3. 使用flink Table &Sql api来构建批量和流式应用(3)Flink Sql 使用

    从flink的官方文档,我们知道flink的编程模型分为四层,sql层是最高层的api,Table api是中间层,DataStream/DataSet Api 是核心,stateful Stream ...

  4. (二)基于商品属性的相似商品推荐算法——Flink SQL实时计算实现商品的隐式评分

    系列随笔: (总览)基于商品属性的相似商品推荐算法 (一)基于商品属性的相似商品推荐算法--整体框架及处理流程 (二)基于商品属性的相似商品推荐算法--Flink SQL实时计算实现商品的隐式评分 ( ...

  5. Apache Flink SQL

    本篇核心目标是让大家概要了解一个完整的 Apache Flink SQL Job 的组成部分,以及 Apache Flink SQL 所提供的核心算子的语义,最后会应用 TumbleWindow 编写 ...

  6. Flink SQL 如何实现数据流的 Join?

    无论在 OLAP 还是 OLTP 领域,Join 都是业务常会涉及到且优化规则比较复杂的 SQL 语句.对于离线计算而言,经过数据库领域多年的积累,Join 语义以及实现已经十分成熟,然而对于近年来刚 ...

  7. [源码分析] 带你梳理 Flink SQL / Table API内部执行流程

    [源码分析] 带你梳理 Flink SQL / Table API内部执行流程 目录 [源码分析] 带你梳理 Flink SQL / Table API内部执行流程 0x00 摘要 0x01 Apac ...

  8. [源码分析]从"UDF不应有状态" 切入来剖析Flink SQL代码生成 (修订版)

    [源码分析]从"UDF不应有状态" 切入来剖析Flink SQL代码生成 (修订版) 目录 [源码分析]从"UDF不应有状态" 切入来剖析Flink SQL代码 ...

  9. Flink sql 之 TopN 与 StreamPhysicalRankRule (源码解析)

    基于flink1.14的源码做解析 公司内有很多业务方都在使用我们Flink sql平台做TopN的计算,今天同事突然问到我,Flink sql 是怎么实现topN的 ? 蒙圈了,这块源码没看过啊 , ...

随机推荐

  1. 学习 lind api 十月 第5弹

    继续 四弹里的 自定义的api response message 但是 那上面的 那些值得也是包含

  2. GitHub 上这几个沙雕项目,够我玩几天

    在家里都憋坏了吧?每天睡了吃吃了睡,该找点事做做了,今天推荐几个好(沙)玩(雕)的开源项目,好在家打发时间. 91 吴先生 一个在线的 PornHub 风格 Logo 生成工具 Logoly.Pro ...

  3. C#反射与特性(九):全网最全-解析反射

    目录 1,判断类型 1.1 类和委托 1.2 值类型 1.3 接口 1.4 数组 2, 类型成员 2.1 类 2.2 委托 2.3 接口 [微信平台,此文仅授权<NCC 开源社区>订阅号发 ...

  4. JS-02-js的变量

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. HDU-2647 Reward(链式前向星+拓扑排序)

    Reward Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  6. 根据范围爬TMS规则瓦片

    因为需要简单写了一个下载地图的爬虫,代码如下: #coding=utf-8 import urllib.request import os import socket import zlib impo ...

  7. Activity工作流框架入门(二)API使用DEMO

    工作流API使用Demo package activity.demo.test; import java.io.File; import java.io.FileInputStream; import ...

  8. Spring AOP源码分析--代理方式的选择

    能坚持别人不能坚持的,才能拥有别人未曾拥有的.关注编程大道公众号,让我们一同坚持心中所想,一起成长!! 年前写了一个面试突击系列的文章,目前只有redis相关的.在这个系列里,我整理了一些面试题与大家 ...

  9. 017.Python函数匿名函数

    匿名函数 lambda表达式 lambda表达式 : 用一句话来表达只具有返回值的函数,简单,方便,直截了当 # 语法: lambda 参数 : 返回值 无参数的lambda 表达式 def func ...

  10. tomcat的编码设置

    Connector port="8080" protocol="HTTP/1.1" URIEncoding="UTF-8"          ...