LCA大佬的做法:

考虑暴力的高斯消元,我们优化它。

$\sum\limits_{j} gcd(i,j)^{c-d} i^d j^d x_j=b_i$

$\sum\limits_{j} gcd(i,j)^{c-d} y_j = \frac{b_i}{i^d}$($y_j=j^d x_j$)

那么高斯消元的矩阵的$(i,j)$位置的值就是$gcd(i,j)^{c-d}$,我们令$f(x)=x^{c-d}$

我们对于高斯消元的矩阵,只需要保留记录$D[i][i]$位置上的值就可以了。

然后当我们消到第$i$行时,有

$\begin{align*} D[i][j] &= 0 &(j \ mod \ i \ne 0) \\ D[i][j] &= g(i) &(j \ mod \ i =0) \end{align*}$

证明:

$g(i) =f(i)-\sum\limits_{t|i,t<i}g(i)$

令$d=gcd(i,j)$($j \ mod \ i \ne 0$),此时

$D[i][j]=f(d)-\sum\limits_{t|d} g(t) = f(d)-g(d)-\sum\limits_{t|d,t<d}g(d)$

因为$g(d) = f(d) - \sum\limits_{t|d,t<d}g(d)$

所以$D[i][j]=f(d)-f(d)=0$

当$j \ mod \ i =0$时,$gcd(i,j)=i$,所以一开始的$D[i][j]$初始值一样,消的过程中减去的东西一样,所以最后的值也应该一样

//Serene
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
#define ll long long
#define db double
#define For(i,a,b) for(int i=(a);i<=(b);++i)
#define Rep(i,a,b) for(int i=(a);i>=(b);--i)
#define getchar gc
const int maxn=1e6+7,maxt=1000+7;
const ll mod=998244353;
ll n,C,D,Td,b[maxn]; inline char gc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
} char cc;ll ff;
template<typename T>void read(T& aa) {
aa=0;cc=getchar();ff=1;
while((cc<'0'||cc>'9')&&cc!='-') cc=getchar();
if(cc=='-') cc=getchar(),ff=-1;
while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar();
aa*=ff;
} ll qp(ll x,ll k) {
ll rs=1;
while(k) {
if(k&1) rs=rs*x%mod;
k>>=1; x=x*x%mod;
}
return rs;
} ll finv(ll x) {return qp(x,mod-2);} ll qp1(ll x,ll k) {
if(k<0) return qp(x,k+(mod-1));
return qp(x,k);
} ll ans[maxn],f[maxn]; bool solve() {
For(i,1,n) b[i]=b[i]*finv(qp(i,D));
For(i,1,n) f[i]=qp1(i,C-D);
For(i,1,n) {
if(f[i]==0&&b[i]) return 0;
else if(f[i]==0) continue;
for(int j=i<<1;j<=n;j+=i) {
f[j]=(f[j]-f[i]+mod)%mod;
b[j]=(b[j]-b[i]+mod)%mod;
}
ans[i]=b[i]*finv(f[i])%mod;
}
Rep(i,n,1) {
for(int j=i<<1;j<=n;j+=i)
ans[i]=(ans[i]-ans[j]+mod)%mod;
}
For(i,1,n) ans[i]=ans[i]*finv(qp(i,D))%mod;
return 1;
} int main() {
freopen("walk.in","r",stdin);
freopen("walk.out","w",stdout);
read(n); read(C); read(D); read(Td);
while(Td--) {
For(i,1,n) read(b[i]);
if(!solve()) printf("-1");
else For(i,1,n) printf("%lld ",ans[i]);
printf("\n");
}
return 0;
}

  

如约而至(walk)的更多相关文章

  1. 如约而至:微信自用的移动端IM网络层跨平台组件库Mars已正式开源

    1.前言 关于微信内部正在使用的网络层封装库Mars开源的消息,1个多月前就已满天飞(参见<微信Mars:微信内部正在使用的网络层封装库,即将开源>),不过微信团队没有失约,微信Mars ...

  2. python os.walk()

    os.walk()返回三个参数:os.walk(dirpath,dirnames,filenames) for dirpath,dirnames,filenames in os.walk(): 返回d ...

  3. LYDSY模拟赛day1 Walk

    /* 依旧考虑新增 2^20 个点. i 只需要向 i 去掉某一位的 1 的点连边. 这样一来图的边数就被压缩到了 20 · 2^20 + 2n + m,然后 BFS 求出 1 到每个点的最短路即可. ...

  4. How Google TestsSoftware - Crawl, walk, run.

    One of the key ways Google achievesgood results with fewer testers than many companies is that we ra ...

  5. poj[3093]Margaritas On River Walk

    Description One of the more popular activities in San Antonio is to enjoy margaritas in the park alo ...

  6. os.walk()

    os.walk() 方法用于通过在目录树种游走输出在目录中的文件名,向上或者向下. walk()方法语法格式如下: os.walk(top[, topdown=True[, onerror=None[ ...

  7. 精品素材:WALK & RIDE 单页网站模板下载

    今天,很高兴能向大家分享一个响应式的,简约风格的 HTML5 单页网站模板.Walk & Ride 这款单页网站模板是现代风格的网页模板,简洁干净,像素完美,特别适合用于推广移动 APP 应用 ...

  8. 股票投资组合-前进优化方法(Walk forward optimization)

    code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && docu ...

  9. Go Walk教程 - 流程控制( switch)

    Go的 switch 非常灵活,表达式不必是常量或整数,执行的过程从上至下,直到找到匹配项,不要break: var score =98 var result string switch score/ ...

随机推荐

  1. 解决ajax请求跨域

    跨域大部分需要通过后台解决,引起跨域的原因: 3个问题同时满足 才可能产生跨域问题,即跨域(协议,主机名,端口号中有一个不同就产生跨域) 下面是解决方法 方法一 // ajax请求跨域 /* *解决a ...

  2. [转]Java四种线程池的使用

    Java通过Executors提供四种线程池,分别为:newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程.newFixe ...

  3. Docker配置JDK1.8

    1.安装Docker(菜鸟教程有) https://www.runoob.com/docker/centos-docker-install.html 2.docker下载centos镜像(用作配置jd ...

  4. ArrayList去除重复元素(多种方法实现)

    package other; import java.util.ArrayList; import java.util.HashSet; public class test4 { public sta ...

  5. csp-s模拟测试10.1(b)X 国的军队,排列组合, 回文题解

    题面:https://www.cnblogs.com/Juve/articles/11615883.html X 国的军队: 好像有O(T*N)的直接贪心做法 其实多带一个log的二分也可以过 先对所 ...

  6. Linux查看温度

    step 1: centos $ sudo yum install lm_sensors ubuntu $ sudo apt-get install lm_sensors step2$ sudo se ...

  7. Synchronized理解及用法

    加锁: 1.同步实例方法,锁是当前实例对象 2.同步类方法,锁的是当前类对象 3.同步代码块,锁是括号里面的对象 原理: JVM内置锁通过synchronized使用,通过内部对象Monitor(监视 ...

  8. mybatis和java一些知识记录

    <where> <if test="userName != null and userName != ''"> and user_name like con ...

  9. CAS增加免登陆(Remember Me)功能

    1. 打开deployerConfigContext.xml 在 authenticationManager 的bean中增加 <property name="authenticati ...

  10. windows server 文件夹和搜索选项被禁用了

    当我们需要调整 windows 文件夹相关的配置时,却发现“文件夹和搜索选项”被禁用了,下图是恢复正常的情况.被禁用时显示灰色,不能点击. 下面给出解决步骤: 打开“组策略”. 然后依次展开“用户配置 ...